
Advanced Design System 2011.01 - Netlist Exporter Setup

1

Advanced Design System 2011.01

Feburary 2011
Netlist Exporter Setup

Advanced Design System 2011.01 - Netlist Exporter Setup

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Netlist Exporter Setup

3

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Netlist Exporter Setup

4

your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Netlist Exporter Setup

5

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Netlist Exporter Setup

6

 Component Definitions . 7
 Component Definition Files . 7
 Component Definition File Setup with the GUI . 11

 Configuration Files . 14
 Configuration Files Used with Front End Flow . 14
 Configuration File Locations . 14
 Configuration File Descriptions . 15
 Tool Configuration Files . 18

 Customizing a Netlister . 23
 Setting Up Automatically Included Files . 23
 Adding Value Mapping Functions . 24
 Adding New Netlist Exporting Functions . 28
 Overriding Existing Front End Flow API Functions . 30

 Front End Flow Functions . 33
 Instance Netlist Exporting Functions . 33
 Subcircuit Header Functions . 36
 Subcircuit Footer Functions . 37
 Netlist Header Function . 38
 Netlist Footer Function . 39
 Circuit Output Functions . 39
 Parameter Formatting Functions . 40
 Global Variable Functions . 41
 Core Functions . 43

 Hspice Netlister Example . 52
 Creating the New Dialect Directories and Files . 52
 Modifying the Configuration File as Needed . 53
 Modifying the Netlisting Functions as Needed . 54
 Creating Component Definitions . 60
 Verifying the Netlist . 70

 Setting up GUI Options . 72
 Option List Global Variable . 72

 Setup . 75
 License Requirements . 75
 Installing Netlist Exporter . 75
 Configuration File Settings . 76
 Design Tool Support . 78
 Front End Flow Directory Structure . 79
 Adding Tools to Front End Flow . 79

Advanced Design System 2011.01 - Netlist Exporter Setup

7

 Component Definitions
In ADS, a component is a symbol that has a specific set of parameters and terminals. It
may also have a related schematic or layout.

Every component makes a single call to the create_item() function which defines the
name of the symbol file, the schematic file, and the parameters. The create_item call
causes ADS to create a uniquely named component. These uniquely named components
can go into ADS schematic hierarchies that are netlisted and simulated in the ADS
simulator.

For netlist exporting, the terminals are determined by accessing the schematic database
file and the symbol database file. These do not have to be the same file in ADS.

 Component Definition Files
Component definition files are ASCII text files in the CNEX_COMPONENT_PATH (feflowlc)
that contain variables that determine how to netlist a component for a particle tool.
Variable names are not case sensitive, but their values are. The variables can be in any
order in the file.

Note
The file <ADS component name>.cnex must be in the appropriate tool directory for the component
definition file to work.

ADS subcircuits do not need to have a component definition file because they inherit the
default subcircuit format. However, if an ADS component is not a hierarchical design, it
must have a definition file.

 Component Definition File Variables

 Netlist_Function

This variable contains the name of the instance function to be called to format an instance
of a component for a netlist.
You have three options for choosing an instance function:

You can use the functions that come with Front End Flow (see Instance Netlist
Exporting Functions (feflowlc)).
You can enter the name of a custom written function.
You can leave the Netlist_Function out of the component definition file. In this case,
Front End Flow automatically uses the function cnexSubcircuitInstance if the
component is a subcircuit, and cnexUnknownInstance if it is a primitive.

Advanced Design System 2011.01 - Netlist Exporter Setup

8

 Syntax

Netlist_Function = < function >

 Example

Netlist_Function = cnexNetlistInstance

 Component_Name

This variable specifies the name for the component instance in the netlist.
In general you can assign any name, but there are some rules for specific cases:

If you use the netlist function cnexSubcircuitInstance , you can type in subcircuit
for the component name. Or, you can assign any other name.
If you want to use the value of a parameter as the component name, use @ followed
by the name of the parameter.
If you use Spice, you can use a single letter for the component name.

 Syntax

Component_Name = < name >

 Example

Component_Name = R

Note
You must always assign a value to this variable in the Component Definition File.

 Terminal_Order

This variable specifies the order for outputting component pins for netlist exporting.

You can specify the order in either pin numbers or pin names, but you cannot use
both together.
If you do not assign an output order, Front End Flow uses the ADS pin output order
which is sequential by pin number.

Advanced Design System 2011.01 - Netlist Exporter Setup

9

Note
Other tool vendors may use a pin output order that is different from the ADS order. Check the
documentation for information on the correct order when you specify this variable.

Note
Many of the standard ADS components do not have pin names, so you must assign pin number
output order.

 Syntax

Terminal_Order = < value >

 Example

T erminal_Order = 1 2

 Parameters

This variable specifies the parameters to output to the netlist for an instance. Front End
Flow outputs the parameters in the order you list them.

You should specify the parameters as a space delimited list.
If you do not specify this variable, no parameters will be output for the instance.

 Syntax

Parameters = < parameter > < parameter >

 Example

Parameters = R _M Model Width Length

 Parameter_Name_Mapping

This variable maps an ADS parameter name to a netlist name.
If you do not want to output the ADS parameter name to, leave Netlist Name blank.
If you want the ADS parameter name to be the same as the netlist name, do not assign
this variable.

Advanced Design System 2011.01 - Netlist Exporter Setup

10

 Syntax

Parameter_Name_Mapping = < ADS Name > (< Netlist Name > |)

 Example

R1 is an instance in ADS. It connects to nodes _net1 and ground , and has the parameters
R=50 and _M=2:
Parameter_Name_Mapping = R

The ADS parameter name R is not mapped to a netlist name.
Parameter_Name_Mapping = _M m

The ADS parameter name _M is mapped to the netlist name m .
Resulting netlist output for Dracula is the following:
RR1 _net1 0 50 m=2

R is not mapped, therefore it is output as 50 in the instance line.
_M is mapped to m , therefore it is ouptut as m=2 in the instance line.

 Parameter_Type_Mapping

This variable specifies the AEL mapping function for an ADS parameter.

If you specify an AEL mapping function, the ADS parameter value will be passed to
that function.The function returns the value that needs to be output to the net list.
If you do not specify an AEL mapping function for a parameter, no mapping will be
done.

 Syntax

Parameter_Type_Mapping = < ADS parameter > < AEL mapping function >

 Example

A custom resistor component named myAdsRes is in ADS. It has two models, myAdsRes1
and myAdsRes2 . The Dracula LVS rule file extracts these models as R1 and R2 . For
correct netlist output, you must map myAdsRes1 to R1 and myAdsRes2 to R2 . In
myAdsRep.cnex , the component definition file, add the following line:
Parameter_Type_Mapping = Model myAdsResMap

When the circuit is netlisted, the function myAdsResMap will be called when the Model
parameter is output. The function will return the appropriate values for output for Dracula.

Advanced Design System 2011.01 - Netlist Exporter Setup

11

Note
There are no standard AEL type mapping functions. You must write them. See Adding Value Mapping
Functions (feflowlc) for information. Check the documentation for the tool you are using to verify the value
outputs that it needs.

 Component Definition File Editing

There are the following two ways to edit component definition files:

You can use a text editor to directly edit the component definition files.
You can use the Component Definition Editor, see Component Definition File Setup
with the GUI".

 Component Definition File Setup with the GUI
The Component Definition Editor (Component Definition Editor) graphical user interface is
available from the Tools > Netlist Export menu. The Editor enables you to specify all the
fields needed for a component definition.

The Component Definition Editor can also read in ADS item definitions so that it can
automatically populate the fields for components that do not already have a definition. For
defined components, it can provide information about available parameters in the ADS
item definition. The Component Definition Editor automatically updates the component
definition table, preventing the use of old definitions.

Advanced Design System 2011.01 - Netlist Exporter Setup

12

 Component Definition Editor

Tool: Choose the tool you want from drop-down menu. The default tool when you start the
Component Definition Editor is the last one specified in the component edit or the netlist
dialog.

Component: Type in the component name.

Browse... If you do not know the name of the component you want to edit, press Browse... to bring up
the Library Browser Window. The Editor automatically reads in the definition of the
component you select.

Definition File
Location

This drop-down menu contains the path for the component definition file. You may edit the
path if you do not find the one you want in the menu. When you edit the path, make sure
you specify a file in a site wide location and not a user location.

 Component Definition Editor Items

Advanced Design System 2011.01 - Netlist Exporter Setup

13

Definition File
Location:
Continued

If there is no file at the specified location, the Component Dialog Editor will follow the
component definition path contained in the CNEX_COMPONENT_PATH (feflowlc) configuration
variable and use the first definition file it finds. If there is no definition file, Front End Flow will
create one based on the information in the AEL create_item call.

The following fields are for entering variable vales in the component definition file.

Netlist
Function:

Choose the name of the function you want to use to format an instance of the component
for netlist exporting. Instance Netlist Exporting Functions (feflowlc) contains the list of the
default functions that come with Front End Flow. You can also write your own netlist export
function. If you do not choose a function, Front End Flow will use the
cnexSubcircuitInstance if the component is a subcircuit, or cnexUnknownInstance if the
component is a primitive.

CNEX
Component
Name:

Type in the name you want for the component instance. If use the cnexSubcircuit netlist
function (see Netlist Function: above), you can use subcircuit for a name.
If you are using Spice, you can use a name that is just one character. In this case, the tool
for which you are exporting the netlist will determine the name.

Terminal Order: This field specifies the pin output order for netlist exporting. The ADS pin order for a
component, which is sequential by pin number, is the default. You should check with the
documentation for other vendor tools because the pin order for those tools may not be the
same as the ADS default.
You can use either pin numbers or pin names to set the terminal order. You cannot mix the
two.
You must use pin numbers with ADS components because many of them do not have pin
names.

Parameters: This list box contains the parameters you want to output. The parameters are output in the
order listed.

Map Parameter
To

This field displays the netlist name for the parameter selected in the Parameters list box.

Parameter Type
Function

This field displays the AEL mapping function for the parameter selected in the Parameters
list box.

Parameter Type
Function
Continued

If you specify an AEL mapping function in this field, the ADS parameter value will be
passed to that function.The function returns the value that needs to be output to the net
list.

 Component Definition Editor Procedure

Select the tool from the Tool: drop-down menu.1.
Type the component name in Component: , or select it by clicking Browse .2.
Press Tab or select the next field in the Editor and Front End Flow will read the3.
component definition into the Editor .
Use Definition File Location: to specify the path to the component definition file.4.
Specify the component definition file variable values in the remaining fields of the5.
GUI.

Advanced Design System 2011.01 - Netlist Exporter Setup

14

 Configuration Files
There are several text configuration files that define variables for the default Front End
Flow netlister and variables for specific tools. This section covers the location of
configuration files and which variables can be set for Front End Flow.

 Configuration Files Used with Front End Flow
The following four configuration files contain pertinent Front End Flow information:

de_sim.cfg The de_sim.cfg file is the PDE configuration file. This file is used to load Front End Flow.

CNEX.cfg The CNEX.cfg file is the Front End Flow configuration file. This file contains information
used by the core functions of the Front End Flow netlister.

<tool>.cfg The <tool>.cfg configuration file contains specific data for a tool. The configuration data
consists of options that are output into netlists for a particular tool.

CNEX_config.<tool> The CNEX_config.<tool> configuration file contains variables that define certain global
variables that are used to create netlists for a particular tool's format.

 Configuration File Locations
The configuration files can be located at the following locations:

 de_sim.cfg

This file can be located in one or more of the following locations (high to low priority):

The workspace directory
$HOME/hpeesof/config
$HPEESOF_DIR/custom/config
$HPEESOF_DIR/config
Front End Flow will follow the above priority, for example a variable in the workspace
directory de_sim.cfg overwrites the value that is defined in
$HPEESOF_DIR/config/de_sim.cfg .

 CNEX.cfg

This file can be located in one or more of the following locations:

The workspace directory
$HOME/hpeesof/config
$HPEESOF_DIR/custom/config
$HPEESOF_DIR/config

Advanced Design System 2011.01 - Netlist Exporter Setup

15

Note
Do not modify variable values within the workspace directory CNEX.cfg file. The workspace directory
CNEX.cfg will be updated with values automatically. User modifications may be overridden.

 <tool>.cfg

This file can be located in one or more of the following locations:

Design kit directories
$HOME/hpeesof/netlist_exp/config
$HPEESOF_DIR/custom/netlist_exp/config
$HPEESOF_DIR/netlist_exp/config

Note
Do not modify variable values within the workspace directory CNEX.cfg file. The workspace directory
CNEX.cfg will be updated with values automatically. User modifications may be overwritten.

 CNEX_config.<tool>

This file can be located under any of the netlist_exp directories defined in the CNEX.cfg
directory. Therefore, files can be in {%CNEX_INSTALL_DIR}/config ,
{%CNEX_CUSTOM_DIR}/config , or {%CNEX_HOME_DIR}/config . In addition, design kit
directories are checked for a netlist_exp/config directory; therefore, you can place a
CNEX_config.<tool> configuration file in a design kit.

 Configuration File Descriptions
The configuration files are defined as follows:

 CNEX.cfg file

The CNEX.cfg file contains all of the configuration variables for starting Front End Flow,
and for specifying paths where component definitions and AEL can be found for different
tools. The following variables can be set in CNEX.cfg :

 CNEX_TOOL

Advanced Design System 2011.01 - Netlist Exporter Setup

16

The CNEX_TOOL configuration variable specifies which netlist format will be created. It is
normally set by the Front End Flow dialogs, and stored within the CNEX.cfg file that is
generated in the current workspace directory. Setting it in the default configuration file in
$HPEESOF_DIR/config will set a default value for the initial tool to use with Front End
Flow.

 CNEX_CUSTOM_DIR, CNEX_HOME_DIR, CNEX_INSTALL_DIR

ADS files are ordinarily stored in the following locations:

$HPEESOF_DIR
The $HPEESOF_DIR directory contains the ADS program as it was installed from the
CD packages.

Note
Do not modify the contents of $HPEESOF_DIR . Patches will always install to $HPEESOF_DIR ,
overwriting any customizations.

The CNEX_INSTALL_DIR configuration variable specifies the location of the
installation files. The Front End Flow installer will always install the Front End Flow
code to $HPEESOF_DIR/netlist_exp . To move the files from that location to a
directory that is not in the ADS main directory tree, modify CNEX_INSTALL_DIR
accordingly. This may be necessary if you wish to maintain multiple versions of Front
End Flow simultaneously without using multiple ADS installations.
Custom directory under $HPEESOF_DIR
The custom directory facilitates site wide customizations and settings. The custom
directory contents are not overwritten when code patches are installed.
The CNEX_CUSTOM_DIR configuration variable specifies the location of the custom
directory storage for the Front End Flow product. It can be set to point at any
directory location. The value defaults to $HPEESOF_DIR/custom/netlist_exp .
$HOME/hpeesof
The hpeesof directory in the user's home directory facilitates user specific
customizations and settings. The custom directory contents are not overwritten when
code patches are installed.
The CNEX_HOME_DIR configuration variable specifies the location of the home
directory storage for the Front End Flow product. It can be set to point at any
directory location. The value defaults to $HOME/hpeesof/netlist_exp .

 CNEX_EXPORT_FILES

The CNEX_EXPORT_FILES configuration variable specifies the location of the AEL files
nexGlobals and cnexNetlistFunctions . The default value, {%CNEX_INSTALL_DIR}/ae l, is
the installation directory defined by the CNEX_INSTALL_DIR variable.

Note
Do not modify the default value of CNEX_EXPORT_FILES .

Advanced Design System 2011.01 - Netlist Exporter Setup

17

 CNEX_STARTUP_AEL

The CNEX_STARTUP_AEL configuration variable specifies the AEL file name to load during
ADS boot-up. The default value is {%CNEX_EXPORT_FILES}/cnexexport .

Note
Do not modify the default value of CNEX_STARTUP_AEL . If the variable does not point to a valid file
named cnex_export , Front End Flow will not be loaded.

 CNEX_DESIGN_KIT_PATH

The CNEX_DESIGN_KIT_PATH variable will be updated within the current workspace
directory's CNEX.cfg file when design kit software is installed. The path variable will define
only the paths to kits that contain a netlist_exp directory with a components subdirectory
for the currently active tool.

Note
The value of this variable within the current workspace directory's CNEX.cfg file will overwrite the variable
value in any other CNEX.cfg files.

 CNEX_DESIGN_KIT_AEL_PATH

The CNEX_DESIGN_KIT_AEL_PATH configuration variable will be updated within the
current workspace directory's CNEX.cfg file when design kit software is installed. The path
variable will define only the paths to kits that contain a netlist_exp directory with an ael
subdirectory for the currently active tool.

Note
The value of this variable within the current workspace directory's CNEX.cfg file will overwrite the variable
value in any other CNEX.cfg files.

 CNEX_EXPORT_FILE_PATH

The CNEX_EXPORT_FILE_PATH configuration variable specifies the locations that will be
searched for Front End Flow AEL files. During netlist exporting, ADS will search the path
and load files with the names cnexGlobals and cnexNetlistFunctions .

AEL has a single name space for all of its variables and functions in a given vocabulary.
When a duplicate function or global variable is found in a file, it will overwrite the value
that is currently in memory. This allows customizations to be done by creating new
functions or global variables in a cnexGlobals file or cnexNetlistFunctions file. It is not
necessary to duplicate all of the code in the earlier files, only the code that requires
modification. It is also possible to add new functions or variables in the leaf files. This
code will go into the single name space for AEL, and can be accessed globally in the same

Advanced Design System 2011.01 - Netlist Exporter Setup

18

manner that the core Front End Flow API functions can be accessed.

Note
The path order determines the priority. Place the paths with the lowest priority first in the list. Files that
are located later in the path will then be able to overwrite the settings that exist in the earlier files.

The default value of CNEX_EXPORT_FILE_PATH includes the definition for
CNEX_DESIGN_KIT_AEL_PATH . It is not necessary to update this value to hard code the
design kit locations.
This variable will also be used to load the GUI options file, cnexOptions .

 CNEX_COMPONENT_PATH

The CNEX_COMPONENT_PATH configuration variable specifies the locations that will be
searched for Front End Flow component definition files. When a component definition file is
encountered during netlist exporting, a name will be constructed consisting of the
component design name, with a suffix of .cnex .

The component path will be searched, until the first instance of a file with the name
<component>.cnex is found. That component definition file will then be read and used to
format the instance for the netlist.

Note
The path order determines the priority. Place the paths with the highest priority first in the list.

The default value of CNEX_COMPONENT_PATH includes the definition for
CNEX_DESIGN_KIT_AEL_PATH . It is not necessary to update this value to hard code the
design kit locations.

 Tool

 Tool Configuration Files
Every tool that is used with Front End Flow can potentially have its own netlist exporting
options and netlist exporting options dialog. Because the options dialogs will be custom
written, there is no set format for these configuration files. The following are some
recommendations for the files:

Make the option configuration variable match the option name.
Booleans should be output as 0 and 1.
Lists must be converted into strings with a delimiter.

Note
Do not output the values using the identify_value function This will make it difficult to interpret lists
in the configuration file.

 CNEX_config Configuration File

Advanced Design System 2011.01 - Netlist Exporter Setup

19

Every tool supported by Front End Flow should have an CNEX_config.<tool> file created
for it. This file should be placed in the config directory of %CNEX_INSTALL_DIR . The
settings in the CNEX_config file specify certain global variables that are used by the Front
End Flow netlister. The following are the valid CNEX_config variables:

 CASE_INSENSITIVE_OUTPUT = TRUE | FALSE

The ADS schematic environment is case sensitive. Most Spice formats are not case
sensitive. If CASE_INSENSITIVE_OUTPUT is set to TRUE , the netlister will map all netlist
node names and instance names to lower case. The netlister will then check for conflicting
names when the final netlist is created. If conflicts are found, a warning will be displayed
that indicates the conflicting names.

The CASE_INSENSITIVE_OUTPUT default value is TRUE .

Note
Additional name mapping will not be performed to resolve name conflicts. Case sensitivity issues (name
conflicts) will require manual name edits within schematics.

 COMPONENT_INSTANCE_SEPARATOR

The COMPONENT_INSTANCE_SEPARATOR configuration variable specifies a separation
charter to be inserted in between the Spice component type character and the ADS
instance name. This can be used to increase readability of the final netlist (some Spice
dialects use a leading character to designate the component type. For example R
designates a resistor).
For example, specifying the underscore character, _ , would generate a Spice netlist
instance name of _R_R1_ for an ADS resister component with the name R1 .
The COMPONENT_INSTANCE_SEPARATOR default value is null.

 EQUIV = <node1> <node 2>

The EQUIV configuration function combines two nodes, <node1> and <node2> together
into <node1> . This function is useful for nodes that are connected (common) on the
schematic.
As many EQUIV lines can be placed in the configuration file as are necessary to define all
of the equivalent node names. During netlist exporting, any time <node 2> is
encountered, it will be renamed to <node 1> . In addition, this list is built internally by
the ignore instance netlist exporting functions.

 EXPRESSION_MAPPING = <ADS name> <netlist name>

Advanced Design System 2011.01 - Netlist Exporter Setup

20

The EXPRESSION_MAPPING configuration function maps ADS expressions, <ADS name> ,
to a user defined expression name, <netlist name> .
When a parameter value is encountered, it will be searched for expressions. Any
expression that is found in the expression mapping list will be converted from the ADS
expression name, <ADS name>, to the target netlist expression name, <netlist name> .

For example, in HSpice, the natural logarithm function is log , in ADS it is ln . To have the
netlister change all instances of ln to log , add an expression mapping line of
EXPRESSION_MAPPING = ln log in the CNEX_Config.hspice configuration file.
Place one EXPRESSION_MAPPING line for each expression to be mapped within the
configuration file.

 EXPRESSION_START, EXPRESSION_END

The EXPRESSION_START configuration variable specifies a expression start character and
the EXPRESSION_END configuration variable specifies the expression end charter to be
used for HSpice and PSpice netlist generation. (HSpice and PSpice require special
characters to designate the start and end of an expression.)

ADS allows expressions in its parameter values, it may be necessary to have those
expressions prefixed with the expression start designator, and suffixed with the
expression end designator.
For example, if EXPRESSION_START is set to ` and EXPRESSION_END is also set to ` ,
and an instance value of R=RVal1+RVal2 is specified on an ADS resistor, the value output
to the netlist would be R='RVal1+RVal2' .
The default is to have no expression start or end designators.

 GROUND

The GROUND configuration variable specifies the global ground node name.
In ADS, node 0 is the global ground node. All instances of node 0 are mapped to the value
of the value of GROUND .

For example, if it is known that the layout uses GND as the ground node, set the GROUND
value to GND . All nodes named 0 will be output as GND .
The default is no node 0 name mapping.

 LINE_COMMENT

The LINE_COMMENT configuration variable specifies the character to output at the
beginning of comment lines. The default value is *.

Advanced Design System 2011.01 - Netlist Exporter Setup

21

 LINE_CONTINUATION_CHARACTER

The LINE_CONTINUATION_CHARACTER configuration variable specifies the character used
to declare a line continuation.

If the maximum line length for the netlist is exceeded, a line continuation will be output.
Different tools support different methods for declaring a line continuation. This will either
be output at the end of the current line, or at the beginning of the next line, depending on
the LINE_CONTINUATION_MODE variable.

The default LINE_CONTINUATION_CHARACTER value is + .

 LINE_CONTINUATION_MODE

The LINE_CONTINUTATION_MODE configuration variable specifies how the continuation
character will be output when a continuation line is required. A value of 0 will be output
the continuation character at beginning of the next line. A value of 1 will be output the
continuation character at the end of the current line. Values above 1 are reserved for
future use.

The default LINE_CONTINUTATION_MODE value is 0 .

 MAX_LINE_LENGTH

The MAX_LINE _LENGTH configuration variable specifies the maximum line length that will
be output before a line continuation character is output.

The default MAX_LINE _LENGTH value is 1024 characters.

 NUMERIC_NODE_PREFIX

The NUMERIC_NODE_PREFIX function adds a specified prefix to system defined node
names.

ADS supports the following two type of node names:

Wire label
The node names are explicitly defined by the user. The NUMERIC_NODE_PREFIX
function ignores these node names.
System node name
Node names are system generated for any net that does not have an explicit label, or
is not attached to ground. The system node names are numbers only. If you are
using a tool that does not support numeric node names, use the
NUMERIC_NODE_PREFIX function to add a prefix to all system defined node names.

Advanced Design System 2011.01 - Netlist Exporter Setup

22

The default value for the node prefix is _net for Assura and Dracula and N$ for
Calibre.

Note
In ADS netlists, the _net prefix designates that the node name will not be saved to a dataset.

For example, if the NUMERIC_NODE_PREFIX is set to _net , and a node is
encountered in ADS with the system defined node name 27 , the netlister will output
the value _net27 for the new node name.

 SCALAR_TO_SCIENTIFIC = FALSE | TRUE

The SCALAR_TO_SCIENTIC function maps scalar quantities into scientific notation.
The SCALAR_TO_SCIENTIC function is useful if your tool's netlist format does not support
scalars. See SCALAR_UNIT_MAPPING for information on customizing scaler mapping.
The SCALAR_TO_SCIENTIC default value is FALSE . (No function line present equals
FALSE .)
For example, if SCALAR_TO_SCIENTIC is set to TRUE , 1n would be output as 1e-9 .

 SCALAR_UNIT_MAPPING = <ADS Scalar> <netlist scalar>

The SCALAR_UNIT_MAPPING function maps specified scalar quantities, <ADS Scalar> ,
into the specified representation, <netlist scalar> .
Use the following mapping guidelines:

Place one line into the file for each scalar that is to be mapped.
Include units and scaling value (for example, MHz) for the ADS scalar quantity, <ADS
Scalar> .
If you want nothing output for the scalar, leave the second field blank (for example,
SCALAR_UNIT_MAPPING = A).
When the value is output to the netlist, any occurrences of the ADS scalar/unit will be
replaced with the netlist equivalent.

Advanced Design System 2011.01 - Netlist Exporter Setup

23

 Customizing a Netlister
You can customize the Front End Flow netlister. You can automatically include files and
add value mapping functions to those described in Front End Flow Functions (feflowlc).
You can also add netlist exporting functions to those already in the Front End Flow API.
And, you can override many of the functions listed in Front End Flow Functions (feflowlc).

 Setting Up Automatically Included Files
The simplest method of customizing a netlister is setting up files that are automatically
included in the final netlist.

Note
Refer to Netlist Exporter (feflowug) for the process for excluding included files.

 The Include File Path

You should include files that set the options for a particular process or create the
subcircuits necessary for a foundry process.
Any file in the following directories will be included in the Front End Flow netlist, unless
you set them up to be excluded:

{%CNEX_INSTALL_DIR}/include/{%CNEX_TOOL}
{%CNEX_CUSTOM_DIR}/include/{%CNEX_TOOL}
{%CNEX_HOME_DIR}/include/{%CNEX_TOOL}
Any design kit path that contains the directory netlist_exp/include/{%CNEX_TOOL}

 Example 1: Including a File Site Wide

You are using the Dracula tool and have set the variable CNEX_INSTALL_DIR to be
$HPEESOF_DIR/netlist_exp . Place the file standard.inc in the directory
CNEX_INSTALL_DIR/include/dracula . Whenever you create a netlist for Dracula,
standard.inc will be included. If you use a different tool, the file will not be included.
CNEX_INSTALL_DIR is available to all site users, therefore standard.inc will be an included
file for all who use the ADS installation on that site. If the ADS installation is on a shared
drive that all users access, the included file will be automatically available to those users.

 Example 2: Foundry Kit Include File

You have a foundry design kit from Foundry A that has the file foundryAOptions.inc , and
you are using Dracula. Place the file in netlist_exp/include/dracula . When you run

Advanced Design System 2011.01 - Netlist Exporter Setup

24

Dracula, foundryAOptions.inc will be automatically included.

 Adding Value Mapping Functions
When the tool you have chosen uses a different type of name than does ADS, or when
that tool uses different parameters or values than does ADS, you must write an AEL value
mapping function to supply the tool with the correct output.

 Case 1: Name Mapping

Use ADS model names that indicate what the component is, such as myAdsRes1 .
However, Dracula only allows two character model names. Map the ADS name to a two
character name that Dracula recognizes.

 Case 2: Parameter Mapping

A single parameter in ADS may need to map to multiple parameters in another tool, or
multiple parameters in ADS may need to map to a single parameter.For example, in ADS
the _V_1Tone_ device has the parameters voltage and frequency. If you use the HSpice
tool, you must map those parameters to the single SIN function for the correct HSpice
output.

 Case 3: Parameter Value Mapping

You may need a function that performs an operation on a parameter that is a value in ADS
and returns a value that is mapped to a parameter in another tool. For example, you want
to map the ADS temperature parameter to the differential dtemp parameter in HSpice.
This requires a function that sets the ADS parameter value to the absolute temperature
set in ADS and subtracts the circuit temperature. The function returns a value that
contains the differential temperature and maps it to dtemp .

 Function Prototype and Example

You must write all AEL value mapping functions. All value mapping functions receive an
ADS parameter value and return the correct tool value. They all use the following
prototype:

defun <function name> (value)

{

<your code here>

return(<new value>);

Advanced Design System 2011.01 - Netlist Exporter Setup

25

}

In addition to the parameter value you pass to the function, you must set the following
three global variables:

cnexCurrentRep
This is a DesignContext handle to the schematic that is currently being processed.
The handle can be used to obtain data about other instances in the circuit.
cnexCurrentInst
This is a handle to the instance that is currently being processed. The handle can be
used to get instance data, or data for other parameters.

 Example1: Writing a Type Mapping Function

defun myFoundryAddQuotes (value)

{

decl newValue=value;

if(is_string(value))

{

newValue=strcat("\"", value, "\"");

}

return(newValue);

}

This function adds quote marks around the ADS value passed to it.

 Accessing Parameter Values Other Than the Current Parameter
Value

In certain cases, it is necessary to access parameter values other than the current
parameter value. This can be used to create an expression of multiple parameter values.
An example of this would be a component that has Width and Length parameters, but the
output netlist requires that an area parameter be output which is equal to the Width times
the Length. The function cnexGetParamValueByName() was added in ADS 2003A.
Using this function, the name of the desired parameter is passed in, and the value is
returned.

 Example

defun myFoundryArea (value)

{

 decl paramIter = db_create_param_iter(cnexCurrentInst);

 if(db_param_iter_is_valid(paramIter))

 {

 decl Width=cnexGetParamValueByName("Width",paramIter);

 decl Length=cnexGetParamValueByName("Length",paramIter);

Advanced Design System 2011.01 - Netlist Exporter Setup

26

 if(Width && Length)

 {

 return(strcat(Width, " * ", Length));

 }

 }

 return("");

}

 Adding the New Netlist Function

To add an instance netlist function, edit the component definition file for your component
by adding a line with the syntax: Parameter_Type_Mapping = <param> <function> .

 Example1: Adding the Function to the Component Definition File

You have an ADS component named myNpn which has a parameter named Model . You
are using the type mapping function myFoundryAddQuotes .

Open the file the component definition file myNpn.cnex .1.
Add the line: Parameter_Type_Mapping = Model myFoundryAddQuotes2.
When an instance of myNpn component is netlisted, the parameter value for Model
will have double quotes around it.

 Placing the Type Mapping Function

The configuration variable CNEX_EXPORT_FILE_PATH (feflowlc) specifies the path where
ADS searches for AEL files. During netlist exporting, ADS loads files named cnexGlobals
and cnexNetlistFunctions located in that path.

AEL has a single name space for all of its variables and functions in a given vocabulary. All
files named cnexGlobals or cnexNetlistFunctions in any path contained in the
CNEX_EXPORT_FILE_PATH (feflowlc) use a single common namespace. Therefore any AEL
function in these files has access to all other AEL variables and functions in such files.

These functions can be added in at any time. Every time the Front End Flow netlister is
executed, all of the cnexNetlistFunctions and cnexGlobals AEL files are loaded.

Note
See Configuration Files (feflowlc) for more information on CNEX_EXPORT_FILE_PATH (feflowlc).

 Example 1: Placing the Function

You want to place the function myFoundryAddQuotes so that Front End Flow can use it.

Advanced Design System 2011.01 - Netlist Exporter Setup

27

Add a file named cnexNetlistFunctions to the directory
{%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL} . If you wrote the function for HSpice, the
directory would be $HPEESOF_DIR/netlist_exp/ael/HSpice . The next time that a Front
End Flow netlist is generated, the myFoundryAddQuotes function will be available.

 Validating a Type Mapping Function

Once the files have been loaded by creating a Front End Flow netlist, you can validate
your function interactively using the ADS Command Line window. Bring up by selecting
the menu option Options > Command Line from the main window. Enter an AEL
function in the command line and you will see the value the function returns.

 Validating Functions that Do Not Use Global Variables

Simple type mapping functions that do not require global variables to be set can be tested
rapidly by using the de_info command and typing the function into the Command Line .
This is shown in Accessing the AEL Command Line to Verify Functions.

Advanced Design System 2011.01 - Netlist Exporter Setup

28

 Accessing the AEL Command Line to Verify Functions

Enter the function in the Command Line window.1.
The resulting return value appears in the Information window when you use the2.
de_info dialog .

Note
The de_info dialog is modal and stops the execution of any further AEL operations.

Validating Functions That Do Use Global Variables
Use the fputs function and specifying stderr as the destination of the output. The
fputs command using stderr will output text to the xterminal window from which ADS
started.

Type the command fputs(stderr, myFoundryAddQuotes("myModel")) in the1.
command line.
The result will display in the xterminal window.2.

Note
If you are running Front End Flow on a PC, be aware that it has no xterminal window. However, if
you run ADS with the -d option you will have a debug window in which you can see the stderr
output. The debug window will also display inter-process function call text.

If the function needs global variables, add fputs(stderr, value) calls in your code.

 Using Some Other Debugging Tips

The identify_value function converts any AEL expression passed to it into a string. It
is useful if you have values that are set to NULL, or if you are debugging lists
because the fputs command only outputs strings.
For formatted debugging output, you use fprintf(stderr, ...) . The fprintf function
in AEL utilizes the same formatting strings as the Ansi C fprintf function.

 Adding New Netlist Exporting Functions
The Front End Flow API provides 8 instance netlist exporting functions. Although these
functions provide the correct output for nearly any ADS instance, there are some
situations where you must write your own function in order to have the correct output.
Some examples of this are outputting multiple instead of single components to a netlist
file, and outputting a library or directive with a component.

 Function Prototype and Example

All instance netlist exporting functions must have the following function prototype:

Advanced Design System 2011.01 - Netlist Exporter Setup

29

defun <function name> \(instH, instRecord\)

{

<your code here>

return(<string>);

}

The parameter instH is the handle to the instance that is currently being formatted.
The instRecord parameter is a list of lists that contains the information obtained by
reading the component definition file for the instance.
The return string is the value you wish to be output to the netlist file.

 Example1: Writing a Type Mapping Function

defun myNpnInstance (instH, instRecord)

{

decl net="";

decl netReturn=cnexNetlistInstance(instH, instRecord);

net=strcat(".lib `MYMODELS' npn\n", netReturn);

return(net);

}

The function myNpnInstance causes the myNpn component to output a .lib statement
when the instance is netlisted. The myNpnInstance function calls the cnexNetlistInstance
function to get the instance netlist exporting line. The result from cnexNetlistInstance is
then concatenated with the .lib statement. The result is then returned.

 Using the New Netlist Function

To use an instance netlist function, you must edit the component definition file for your
component by adding a line with the syntax: Netlist_Function = <function> .

 Adding the Function to the Component File

Open myNpn.cnex , component definition file for myNew , and change the line
Netlist_Function is changed so it reads:
Netlist_Function = myNpnInstance
The myNpn component will now use the newly created instance netlist exporting function.
More detailed examples can be found in Hspice Netlister Example (feflowlc).

 Placing a New Netlist Exporting Function

Advanced Design System 2011.01 - Netlist Exporter Setup

30

The configuration variable CNEX_EXPORT_FILE_PATH (feflowlc) specifies the location
where ADS searches for AEL files. During netlist exporting, ADS follows the path and loads
files named cnexGlobals and cnexNetlistFunctions.

AEL has a single name space for all of its variables and functions. All files named
cnexGlobals or cnexNetlistFunctions in any path contained in the
CNEX_EXPORT_FILE_PATH (feflowlc) uses this space. Therefore any AEL function has
access to all AEL variables and functions.

These functions can be added in at any time. Every time the Front End Flow netlister is
executed, all of the c nexNetlistFunctions and cnexGlobals AEL files are loaded.

Note
See Configuration Files (feflowlc) for more information on the CNEX_EXPORT_FILE_PATH (feflowlc).

 Adding the New Instance Netlist Exporting Function to a File

You want to place the function myNpnInstance . Add a file named cnexNetlistFunctions to
the directory {%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL} . If you wrote the function for
HSpice, the directory would be $HPEESOF_DIR/netlist_exp/ael/HSpice . The next time
that a Front End Flow netlist is generated, the myNpnInstance function will be available.

 Overriding Existing Front End Flow API Functions
Front End Flow provides API netlister functions for three tools: Dracula, Calibre, and
Assura. Front End Flow Functions (feflowlc) describes these functions. If you use a
different tool, you should override the default API functions relevant to the correct output
for your tool. To override means to keep the name of the default API function, but to
modify its code so that it provides the correct output for your tool.

It is better to override the existing API functions than to write a new one with a new
name. The reason is that end users may need to modify standard ADS component
definitions so that they can map into your foundry process. These standard ADS
components use the default API function names. If you use new API function names, the
end user will not know the use of the new function, unless you supply that information. If
you override the default functions, the end user can use the standard Front End Flow
documentation.
You can override the functions at any time. Every time the Front End Flow netlister is
executed, all of the cnexNetlistFunctions and cnexGlobals AEL files are loaded.

 Function Prototype

To override a Front End Flow API function, you must make sure to follow the function
prototypes that are defined in Front End Flow Functions (feflowlc).

Advanced Design System 2011.01 - Netlist Exporter Setup

31

Whenever you override, you must use the same argument list and return name as
the default function.
There are some core functions in Front End Flow that will call the API functions
directly. Those functions cannot be overridden.

Note
If the functions called by the Front End Flow core return incorrect names, or receive the wrong
arguments, the Front End Flow netlister will error out and no netlist will be produced.

 Example 1: Overriding the Top Cell Header Function

The function that controls how the top cell is output is the Front End Flow API function
cnexOutputTopcellHeader (feflowlc). The values it receives are the design name and the
design context handle. For the Dracula-spice netlister, the function simply calls the
subcircuit header function, which will cause a .subckt line to be created for the top cell as
follows:

defun cnexOutputTopcellHeader(designName, context)

{

 return(cnexOutputSubcircuitHeader(designName, context));

}

For HSpice, the .subckt line is not required. In this case, override the default API function
to output nothing for the top cell header:

defun cnexOutputTopcellHeader(designName, context)

{

 return("");

}

Place this function into a file called cnexNetlistFunctions . Put this file in an HSpice
subdirectory in one of the CNEX_EXPORT_FILE_PATH (feflowlc) directories. When a netlist
is created for HSpice, it will no longer use the default top cell function, it will use the API
function that was modified for HSpice.

For more detailed examples of overriding API functions, refer to Hspice Netlister Example
(feflowlc).

 Function De

 Subclassing a Function Definition

You may want to simply add a feature to an existing API function instead of overriding it.
This is called subclassing a function.

In AEL, everything can be accessed as a variable, including functions. If you create a
variable and set the variable equal to a function, you can call the variable value just like it

Advanced Design System 2011.01 - Netlist Exporter Setup

32

was the function name. To save the function so you can access it later, you need to define
the AEL variable as a global variable.

You can also create a variable and store a function to the variable, then override the
function. The old definition is still in memory, and can be accessed through the variable.
To save the function so you can access it later, you need to define the AEL variable as a
global variable, and you must set the variable value prior to creating your new
function.This is similar to accessing a parent method in C++, but the functions are not
stored in classes.

 Example 1: Subclassing an Original AEL Function

You have a function called cnexOutputTopcellHeader . You do not want to change how the
function works, you just want to add a comment to it. The following code maintains the
original function and adds your comment:

decl originalCnexOutputTopcellHeader=cnexOutputTopcellHeader;

defun cnexOutputTopcellHeader(designName, context)

{

decl net=originalCnexOutputTopcellHeader(designName, context);

decl returnNet="* Subclassed the original function to add this comment\n";

returnNet=strcat(returnNet, net);

return(returnNet);

}

The first line creates the global AEL variable originalCnexOutputTopcellHeader and assigns
it the value cnexOutputTopcellHeader .

Note
The function value is a memory pointer, so the global variable points to the same memory location as
cnexOutputTopcellHeader . Once you have assigned the variable value, you can call that variable as if you
had used a defun call to create a brand new function.

The fifth line adds the comment to the value generated by the function to which the
variable originalcnexOutputTopcellHeader points, the function cnexOutputTopcellHeader .

Advanced Design System 2011.01 - Netlist Exporter Setup

33

 Front End Flow Functions
This section contains a list of the default Front End Flow functions. Every entry has a
description of the function, its arguments, and its return valued. You can override any of
these functions unless specifically noted. However, it is critical that any function that is
overridden must have the same argument list and the same return value name.

 Instance Netlist Exporting Functions
These functions are generic functions that can format an instance for a netlist. If you are
using a tool other than Dracula, Calibre, or Assura, you may need to override them in
order to support your tool. All of these functions are provided in source form in the file
cnexNetlistFunctions.ael.

 cnexGlobalNodeInstance

This function reads an ADS global node instance and returns a string with the appropriate
syntax for a global node statement.

 Syntax

cnexGlobalNodeInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 cnexVariableInstance

This function reads an ADS VAR component instance, and returns a string with the
appropriate variable definition format.

 Syntax

cnexVariableInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

Advanced Design System 2011.01 - Netlist Exporter Setup

34

 cnexUnknownInstance

Do not override this function. Any time an instance is determined to be a primitive, and it
does not have a component definition file for the current tool, this function will be called
automatically. This function will output a warning to the log file, and a comment line into
the netlist file. If you have a component that calls this function, it means you want to
ignore the component. By using this function, the netlist can still be created without
requiring extra work to be done.

 Syntax

cnexUnknownInstance(instH , instRecord);

Where
instH Handle to the instance
instRecord List of lists read from the component definition file

 cnexIgnoreInstance

The cnexIgnoreInstance function bypasses the processing of an instance. For components
that are attached in a schematic, this results in an open circuit at the point where the
component is connected. Use the cnexIgnoreInstance function with detached components,
such as model components, and with parasitic components that are placed in parallel with
other components, such as parasitic capacitors. The return value is an empty string.

 Syntax

cnexIgnoreInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 cnexShortInstance

The cnexShortInstance function shorts all of the nodes of a device together into a single
node. These nodes are collected into a global list which is used to replace all of the nodes
when the instances that are not shorted are finally output. Use this function to short
circuit transmission line components, such as the mlin or tee , or to short circuit parasitic

Advanced Design System 2011.01 - Netlist Exporter Setup

35

devices that are connected in series. This function is called internally and should not be
overridden. The return value is an empty string.

 Syntax

cnexShortInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 cnexShortMultiportInstance

The cnexShortMultiportInstance functions shorts pairs of pins on a device together into a
single node. These nodes are collected into a global list which is used to replace shorted
node names when other instances are output. Use this function to short circuit multi-port
transmission lines, such as the four port coaxial cable. This function is called internally and
should not be overridden. The return value is an empty string.

 Syntax

cnexShortMultiportInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 cnexNetlistInstance

This is the generic function for outputting instances as primitives. If you use a tool other
than Dracula, Calibre, or Assura, you must override this function so that it supplies the
correct output for your tool. The return value is a string that represents a component for a
particular tool.

 Syntax

cnexNetlistInstance(instH , instRecord);

Where

Advanced Design System 2011.01 - Netlist Exporter Setup

36

instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 cnexSubcircuitInstance

This is the generic function for outputting instances that represent hierarchical subcircuits.
If you use a tool other than Dracula, Calibre, or Assura, you must override this function so
that it supplies the correct output for your tool. The return value is a string that
represents a subcircuit call for a particular tool.

 Syntax

cnexSubcircuitInstance(instH , instRecord);

Where
instH is the handle to the instance
instRecord is a list of lists read from the component definition file

 Subcircuit Header Functions
These functions output the header for a hierarchical subcircuit in a netlist.If you use a tool
other than Dracula, Calibre, or Assura, you must override these functions so that they
supply the correct output for your tool. Both functions are provided in source form in the
file cnexNetlistFunctions.ael.

 cnexOutputSubcircuitHeader

This function formats the header for a subcircuit. The default function will return an Hspice
syntax subcircuit statement. The function also outputs the line to the netlist, so it is not
necessary to also call the cnexExportWriteToNetlist function. If you use a tool other than
Dracula, Calibre, or Assura, you must override this function so that it supplies the correct
output for your tool.

 Syntax

cnexOutputSubcircuitHeader(designName , context);

Where
designName is a string containing the design name

Advanced Design System 2011.01 - Netlist Exporter Setup

37

context is the DesignContext handle of the design

 Example

decl context = de_get_design_context_from_name("mylib:mydesign:schematic");

decl net=cnexOutputSubcircuitHeader("mylib:mydesign:schematic", context);

fputs(stderr, net};

_.subckt myDesign in out

_

 cnexOutputTopcellHeader

This function formats the header for the top cell circuit. The default function will return an
HSpice syntax subcircuit statement which is ready to use with Dracula. If you use a tool
other than Dracula, calibre, or Assura, you must override this function so that it supplies
the correct output for your tool.

 Syntax

cnexOutputTopcellHeader(designName , context);

Where
designName is a string containing the top cell design name
context is the DesignContext handle to the top cell

 Subcircuit Footer Functions
These functions are responsible for writing out hierarchical subcircuit footers, for example,
the .ends statement in a spice netlist. If you use a tool other than Dracula, calibre, or
Assura, you must override these functions so that they supply the correct output for your
tool. Both functions are provided in source form in the file cnexNetlistFunctions.ael.

 cnexOutputSubcircuitFooter

This function formats the footer for a subcircuit. The default function will return an HSpice
syntax subcircuit .ends directive, which signals the end of the subcircuit. If you use a tool
other than Dracula, calibre, or Assura, you must override this function so that it supplies
the correct output for your tool.

 Syntax

Advanced Design System 2011.01 - Netlist Exporter Setup

38

cnexOutputTopcellFooter(designName , context);

Where
designName is a string containing the top cell design name
context is the DesignContext handle to the top cell

 Example

decl context = de_get_design_context_from_name("mylib:mydesign:schematic");

decl net=cnexOutputSubcircuitFooter("mylib:mydesign:schematic", context);

fputs(stderr, net};

.ends myDesign

 cnexOutputTopcellFooter

This function formats the footer for the top cell circuit. The default function will return an
HSpice syntax subcircuit end directive, which is appropriate for Dracula. If you use a tool
other than Dracula, calibre, or Assura, you must override this function so that it supplies
the correct output for your tool.

 Syntax

cnexOutputTopcellFooter(designName , context);

Where
designName is a string containing the top cell design name
context is the DesignContext handle to the top cell

 Netlist Header Function

 cnexExportNetlistHeader

This function returns a string that outputs the first lines in the netlist file. The string can
contain new line characters to make it span more than a single line of output. This
function is always the first function called when generating a netlist. The default function
will output global nodes, option statements, comments, and include files.

Advanced Design System 2011.01 - Netlist Exporter Setup

39

 Syntax

cnexExportNetlistHeader(designName , context);

Where
designName is a string containing the top cell design name
context is the DesignContext handle to the schematic representation of the top cell

 Netlist Footer Function

 cnexExportNetlistFooter

This function outputs the ending lines of the netlist. The default function will output an
HSpice .end directive at the end of the netlist.

 Syntax

cnexExportNetlistFooter(designName , context);

Where
designName is a string containing the top cell design name
context is the DesignContext handle to the schematic representation of the top cell

 Circuit Output Functions

 cnexOutputSubcircuit

This is a wrapper function that makes all of the calls necessary to completely output a
subcircuit. The function calls cnexExportSubcircuitHeader , cnexOutputCircuitData , and
cnexExportSubcircuitFooter. The function will always return a NULL.

 Syntax

cnexOutputSubcircuit(designName);

Where

Advanced Design System 2011.01 - Netlist Exporter Setup

40

designName is a string containing the name of the subcircuit

 cnexOutputCircuitData

This function examines all of the instances in a schematic representation and calls the
appropriate output functions for each of the instances. The function has no return value.

 Syntax

cnexOutputCircuitData(context, topLevel);

Where
context is a DesignContext handle to the schematic that will be output
topLevel is a boolean value designating whether the current representation is the top level
circuit or not

 Parameter Formatting Functions
These functions reformat a parameters value so it can be output into a netlist. These
functions are called internally, so it is critical that the functions return the correct values.

 cnexExportFormatValue

This function takes a string value with valid ADS metric or english scalars and units, and
returns a value that has a number with english or metric scalars appropriate for the netlist
tool. The function uses replacement values from the configuration file found in the path
location specified in the variable SCALAR_UNIT_MAPPING.

 Syntax

cnexExportFormatValue(val);

Where
val is a parameter value that needs to be formatted for a particular tool.

 Example

Advanced Design System 2011.01 - Netlist Exporter Setup

41

cnexExportFormatValue("900 MHz");

returns 900meg

 cnexExportScalarExpand

This function takes a string value that represents a number in metric or english scalars
and converts it to a scientific notation string.

 Syntax

cnexExportScalarExpand(val);

Where
val is a parameter value that is to be converted to scientific notation

 Example

cnexExportScalarExpand("1mOhm");

returns 1e-3

 cnexGetParamValueByName

This function will retrieve the value of the specified parameter for the instance that is
currently being netlisted. If the parameter name specified on the instance is not found,
the function will return NULL.

 Syntax

cnexGetParamValueByName(paramName);

Where
paramName is the string value of a parameter on the instance that is currently being
netlisted.

 Global Variable Functions

Advanced Design System 2011.01 - Netlist Exporter Setup

42

 cnexExportReadGlobals

This function is called prior to exporting a Front End Flow netlist. It reads the CNEX_config
file for the current tool. This function definition is in cnexGlobals.ael , and you can override
if it is necessary to write your own variables into a CNEX_config configuration file for a
custom tool. It is not necessary to call this function in any user defined code.

 Syntax

cnexExportReadGlobals();

 cnexExportClearGlobals

This function is called prior to outputting a netlist and directly after a netlist is created.
The function sets all lists and string values that have been defined back to their default
values or to NULL to conserve memory. This function is in cnexGlobals.ael. Override this
function if you add your own new global variables.

 Syntax

cnexExportClearGloblas();

 Option Functions

 cnexNetlistDialogOptions_cb

The function creates a dialog box that contains the options that have been set up for your
tool. You must override the cnexNetlistDialogOptions_cb function for your tool if you wish
to allow the user to graphically specify option settings for a netlist. This function is
provided in source form in the file cnexOptions.ael. For more information on how to set
this function up, see Setting up GUI Options (feflowlc).

 Syntax

Advanced Design System 2011.01 - Netlist Exporter Setup

43

cnexNetlistDialogOptions_cb(buttonH , mainDlgH , winInst);

Where
buttonH is the handle to the button that was clicked to initiate the function call
mainDlgH is the handle to the dialog that initiated the function call
winInst is the handle to the window that the dialog belongs to

 Core Functions
The core functions should not be overridden. These functions access the database directly.
They also provide extra intelligence that modifies the return values from the database to
include effects from power pins, instance iteration, and bus vector notation. These
functions should be called in your own functions.

Note
If you do find that you must override one of these functions, you must contact Agilent Technologies
directly to request the source code. The source code for these functions is not provided in any of the AEL
functions distributed with Front End Flow.

 cnex_bound

The cnex_bound function uses the on_error function to redirect errors that result from
using an undeclared variable or an undeclared function. The redirected error function will
return NULL if an attempt to reference an undeclared function or variable is made. If the
variable or function exists, the value of the variable or function is returned. This function
can be used to see if functions that were declared in other ADS modules have been loaded
prior to using them. It can also verify if global variables declared in other ADS modules
have been defined prior to using them.

 Syntax

cnex_bound(var);

Where
var is the string name of the variable or function to check

 Example

decl x=1;

cnex_bound("x");Returns 1

cnex_bound("y");Returns NULL

Advanced Design System 2011.01 - Netlist Exporter Setup

44

 cnexExpandBusNotation

This is a general purpose function that returns an expanded list of all of the items for bus
notations. This function can handle any notation that Cadence DFII bus vector notation
supports. Therefore, this function is appropriate for any instance, pin, or wire that uses
bus notation. That means it can expand more than ADS will allow. However, the function
works with the smaller ADS environment.

Node Name *Node List*

a a

a,b a,b

<*2>a a,a

<*2>a,<*2>b a,a,b,b

<*2>(a,b} a,b,a,b

a<0> a<0>

a<0,1,2> a<0>,a<1>,a<2>

a<0:1> a<0>,a<1>

a<0:1>,b a<0>,a<1>,b

a<0:2:2> a<0>,a<2>

a<0:1*2> a<0>,a<0>,a<1>,a<1>

a<(0:1}*2> a<0>,a<1>,a<0>,a<1>

 Syntax

cnexExpandBusNotation(busString);

Where
busString is the bus vector string that is to be expanded

 Example

cnexExpandBusNotation("a,b");Returns list("a","b")

cnexExpandBusNotation("a<0:2>");Returns list("a<0>","a<1>","a<2>")

cnexExport
This function generates a netlist. The Front End Flow netlist dialog box calls this function
directly, and allows you to set global variables prior to calling this function. If you wish to
make your own non-interactive functions that will create non-ADS netlists, this function
should be called.

Advanced Design System 2011.01 - Netlist Exporter Setup

45

 Syntax

cnexExport(cnexType , designName , netlistName , logName);

Where
cnexType is the name of the tool to generate the netlist for
designName is the name of the top cell design to export
netlistName is the full path name of the netlist to produce
logName is the full path name of a log file for error and warning messages

 cnexExportAsciiCode

This function returns an ASCII number for a character. Use it to replace illegal characters
with a numeric code in the function cnexExportFixIllegalChars. If a character is not found,
the code 45 is returned.

 Syntax

cnexExportAsciiCode(c);

Where
c is the character to get the ASCII code for

 Example

cnexExportAsciiCode("a");Returns 65

 cnexExportFindAllSubcircuits

This is a recursive function examines the hierarchy of the schematic representation that
was passed to it and looks for all instances that have hierarchy. The function returns a list
of design names that are subcircuits. The function additionally checks the node names of
each representation and adds any node that ends in the character ! to the global node list.

 Syntax

cnexExportFindAllSubcircuits(context);

Where

Advanced Design System 2011.01 - Netlist Exporter Setup

46

context is the DesignContext handle of the schematic design to search for hierarchical
components
cnexExportFixIllegalChars
This function examines a string value and replaces all of illegal characters with the
appropriate ASCII code. The ASCII code is prefixed and suffixed with an underscore
character to designate that it was an illegal character code and not simply a number that
was part of the name. The function returns the fixed string value.

 Syntax

cnexExportFixIllegalChars(val , charList);

Where
val is the string value that needs to have illegal characters replaced
charList is the string of characters that are illegal

 Example

cnexExportFixIllegalChars("abc", "b");Returns "a_66_c"

cnexExportItemdefParmAttribute
This routine retrieves the attributes associated with a parameter in an ADS item definition.
It returns the integer value of the attribute.

 Syntax

cnexExportItemdefParmAttribute(parmDefH , parmName);

Where
parmDefH is the handle to the head of the item definition parameter list
parmName is the name of the parameter to retrieve an attribute for

 cnexExportShortName

This function will return the leaf name of a full path name that is passed in. This function
is normally used to get the component name from a full directory path.

 Syntax

Advanced Design System 2011.01 - Netlist Exporter Setup

47

cnexExportShortName(name);

Where
name is the string value of a component name that is expressed with a full path.

 cnexExportWriteToLog

This function writes the text passed in to it out to the log file that was specified in the
cnexExport function call. The text string passed in to the function may contain new line
characters to force output to be more than a single line.

 Syntax

cnexExportWriteToLog(text);

Where
text is the text to output to the log file

 cnexExportWriteToNetlist

This function writes the text string passed to it out to the netlist file that was specified in
the cnexExport function call. The text string is processed so that it does not exceed the
maximum line length and has the appropriate continuation characters added at the start
or end of the current line.

 Syntax

cnexExportWriteToNetlist(net);

Where
net is the string to output to the netlist file

 cnexGetComponentName

This function gets the component name appropriate for the current tool. The instance
component definition is consulted to see if a specific component name has been defined. If
it has, that component name will be used.
Otherwise, the function checks to see if the component name field is empty or is a
subcircuit, and if the function name for output is cnexSubcircuitInstance. If the component
is a subcircuit, the ADS component name is used. If component name is empty and the

Advanced Design System 2011.01 - Netlist Exporter Setup

48

function is not cnexSubcircuitInstance , the component name is returned as an empty
string.

 Syntax

cnexGetComponentName(instH , instRecord);

Where
instH is the instance handle of the component
instRecord is the component definition record for the instance

 cnexGetInstanceName

This function returns the instance name to use for the current instance handle. In cases
where a component is being iterated because of bus notation, the instance name is
returned with the appropriate iteration counter.

 Syntax

cnexGetInstanceName(instH);

Where
instH is the instance handle of the instance to get the instance name from
cnexGetInstanceRecord
This function searches the component definition path and reads in the appropriate
component definition file for the specified instance or design name. If the instance handle
is specified, the design name is retrieved from the instance handle. If a specific definition
directory is specified, and that directory contains a definition for the component, that
definition is read instead of searching the component definition path. If the definition
directory is specified, and definition exists in that directory, the component path will be
searched instead.
If no component definition record can be found for the instance, a default record is
created. The default record checks to see if the component is a subcircuit definition. If it
is, the default definition is set up to output a subcircuit record, using
cnexSubcircuitInstance. If the component is not a subcircuit, it is set up to use
cnexUnknownInstance instead.

 Syntax

cnexGetInstanceRecord(instH, [dsnName , definitionDir]);

Advanced Design System 2011.01 - Netlist Exporter Setup

49

Where
instH is the current instance to get the definition record for
dsnName is the design name to get a record for if instH is NULL
definitionDir is an optional directory to read the component definition file from

 cnexGetInstances

This function retrieves a list of the instances for a representation. The return value is a list
of instance handles for the schematic representation.

 Syntax

cnexGetInstances(context);

Where
context is the DesignContext of the schematic design to get the instance list for

 cnexGetParameterList

This function retrieves the parameter list from an instance record.

 Syntax

cnexGetParameterList(instRecord);

Where
instRecord is a list that represents the data from the component definition file
cnexGetParameterValues
This function retrieves the values set for an instance for all of the parameters that are in
the instance record parameter list. The list records are the mapped name, the parameter
value, and the original parameter name. The function returns a list of lists.

 Syntax

cnexGetParameterValues(instH , instRecord);

Where
instH is the instance handle of the current instance
instRecord is a list that represents the data from the component definition file

Advanced Design System 2011.01 - Netlist Exporter Setup

50

 cnexGetPinConnections

This function looks for the instance handle and the terminal order and returns a list of
nodes for connectivity with the instance. The list is ordered to match the terminal order of
the instance. This function takes into account bus vector notation and return node names
that have the proper bus indices on them.

 Syntax

cnexGetPinConnections(instH , instRecord);

Where
instH is the instance handle of the current instance
instRecord is a list that represents the data from the component definition file

 cnexGetTerminalOrder

This function returns a list that represents the instance terminal order. The order is
determined by looking at the termOrder field of the instRecord. If the termOrder field is
not set, the instance symbol is consulted, and the terminal order is determined by reading
the pin number from each of the symbol pins. This function also sets up the global
variable cnexInheritedConnectionList based on whether power pins have been set up on
the instance or in the hierarchy of the instance.

 Syntax

cnexGetTerminalOrder(instH , instRecord);

Where
instH is the instance handle of the current instance
instRecord is a list that represents the data from the component definition file

 cnexGetCustomDir

This function reads the Front End Flow configuration files and returns the value set for
CNEX_CUSTOM_DIR. If the value is not set in a configuration file, it returns
$HPEESOF_DIR/custom/netlist_exp.

Advanced Design System 2011.01 - Netlist Exporter Setup

51

 Syntax

cnexGetCustomDir();

 cnexGetHomeDir

This function reads the Front End Flow configuration files and returns the value set for
CNEX_HOME_DIR. If the value is not set in a configuration file, it returns
$HOME/hpeesof/netlist_exp.

 Syntax

cnexGetHomeDir();

cnexGetInstallDir
This function reads the Front End Flow configuration files and returns the value set for
CNEX_INSTALL_DIR. If the value is not set in a configuration file, it returns
$HPEESOF_DIR/netlist_exp.
Syntax

cnexGetInstallDir();

 cnexGetTool

This function reads the Front End Flow configuration files and returns the value set for
CNEX_TOOL. If the value is not set in a configuration file, it returns dracula.

 Syntax

cnexGetTool();

cnexGetToolList
This function reads the configuration files, and retrieves the value of
CNEX_COMPONENT_PATH. It uses that value to search for which tool directories exist in
the current component path. It then returns a list which contains the available tools for
Front End Flow.

Advanced Design System 2011.01 - Netlist Exporter Setup

52

 Hspice Netlister Example
This section provides an example for creating a custom dialect from the base netlist
format shipped with Front End Flow. The HSpice netlist code configured in this example is
shipped with Front End Flow. Many of the functions in Front End Flow are provided in
source form to allow you to create your own netlist dialect by modifying some key
functions.

To create a custom dialect, perform the following steps:

Create the New Dialect Directories and Files.1.
Modify the Configuration File as Needed.2.
Modify the Netlisting Functions as Needed.3.
Create Component Definitions.4.
Verify the Netlist.5.

 Creating the New Dialect Directories and Files
The first step for making a new netlisting dialect is to create the directories so that Front
End Flow recognizes the new dialect.
As was noted in Adding a Tool (feflowlc), Front End Flow checks the variable
CNEX_COMPONENT_PATH (feflowlc) to locate the Front End Flow tools. Adding in an
HSpice directory in one of the component path directories allows Front End Flow to
recognize the new HSpice dialect.

Adding a new dialect requires the following three items:

The component definitions
This requires making a component definition directory.
Creating or overriding AEL definitions
This requires making a code directory to contain the AEL files.
Writing a configuration file
This requires making a new configuration file that sets global netlisting variables
different from the default settings.

 Making the Component Directory

While the test component definitions are under development, place them in a directory
that will only be visible to the developer. To do this, put the definitions in
{%CNEX_HOME_DIR}/components .

Once the definitions are finished, move them to another directory, such as
{%CNEX_CUSTOM_DIR}/components , or a design kit directory. You could also add your
own directory to CNEX_COMPONENT_PATH by editing the CNEX.cfg file. This allows you to
development in your own directory, for example,

Advanced Design System 2011.01 - Netlist Exporter Setup

53

$HOME/development/netlist_exp/components/{%CNEX_TOOL} .

For this example, an HSpice directory is created in
$HOME/hpeesof/netlist_exp/components which corresponds to
{%CNEX_HOME_DIR}/components . Place all of the test component definitions in this
directory. When the development is finished, move them to an appropriate central
directory.

 Creating the Source Code Directory

In addition to creating component definitions, there are functions you must override to
make the HSpice netlist dialect work. Put the AEL functions to override in a file in their
appropriate home directory. The configuration variable CNEX_COMPONENT_PATH
(feflowlc) defines where Front End Flow will look for AEL files. That location is
{%CNEX_HOME_DIR}/ael/{%CNEX_TOOL}. You are developing a CNEX_TOOL called
HSpice . Therefore, you make a directory called HSpice at $HOME/hpeesof/netlist_exp/ael
.

 Creating the HSpice Configuration File

In addition to overriding functions and creating component definitions, you must also
make a configuration file for HSpice. CNEX_COMPONENT_PATH searches for component
files with the name type CNEX_config.{%CNEX_TOOL}. We have been using home
directories to place our development files, so use {%CNEX_HOME_DIR}/config for the
location for making the new configuration file.

It is easier to modify an existing configuration file than to write a completely new one. Use
CNEX_config.dracula as the basis for the new HSpice configuration file because Dracula
uses HSpice style netlists. Copy CNEX_config.dracula from {%LVS_INSTALL_DIR}/config
to {%LVS_HOME_DIR}/config/CNEX_config.HSpice . This satisfies the need to have a
configuration file with the name CNEX_config.{%CNEX_TOOL} so that
CNEX_COMPONENT_PATH can find it.

 Modifying the Configuration File as Needed
The netlisting configuration file is discussed in CNEX_config Configuration File (feflowlc).
Compare each of the configuration variables with the with the documentation of the tool
you are supporting to determine which, if any, of the configuration variables need to be
modified.

Refer to Configuration Files (feflowlc) and use the following example as a checklist for
your custom dialect. This example uses HSpice as the custom dialect.

Advanced Design System 2011.01 - Netlist Exporter Setup

54

Is HSpice dialect case sensitive?1.
No. Set CASE_INSENSITIVE_OUTPUT to TRUE .
Is a component instance separator needed?2.
No. Leave it blank.
Are there any nodes in ADS that should be set to equivalent nodes in HSpice?3.
No. Therefore do not add EQUIV lines to the file.
Are there any expressions in ADS that are different in HSpice?4.
Yes. you need to map the ADS expressions to the corresponding HSpice expressions.
For example, the function ln is log in HSpice, so you map the expression as
EXPRESSION_MAPPING = ln log . Also, the ADS function log is equivalent to HSpice's
log10 . Map that expression as EXPRESSION_MAPPING = log log10 . Map any other
expressions required by the tool you are using.
Does HSpice require an expression delimiter?5.
Yes. HSpice expressions are required to be enclosed in single quote marks. Set
EXPRESSION_START to `, and also set EXPRESSION_END to `.
Does HSpice have a particular node that is ground?6.
Yes. Node 0 is always ground in HSpice. Set the variable GROUND to 0 .
What character is used to designate a comment line for HSpice?7.
HSpice uses the * character at the start of a line to designate the line as a comment.
Set LINE_COMMENT to *.
What is the continuation character?8.
The continuation character in HSpice is + . It is placed at the beginning of the
following line. Set the variable LINE_CONTINUATION_CHARACTER to +. Because the
continuation character must be at the beginning of the following line, set
LINE_CONTINUATION_MODE to 0 .
Does HSpice have a maximum line length?9.
HSpice input line can be a maximum of 1024 characters. Set MAX_LINE_LENGTH to
1024 .
Does HSpice allow numeric node names?10.
Yes. However, names that begin with a number ignore any alphabetic characters
after the numbers. This is not true in ADS. Therefore, use numeric node names that
are prefixed. Set the NUMERIC_NODE_PREFIX to _net in order to be consistent with
ADS.
Does HSpice support engineering notation?11.
Yes. Since engineering format is easier to read, set SCALAR_TO_SCIENTIFIC to
FALSE .
Do the HSpice engineering notations match the ADS engineering notations?12.
Not in all cases. HSpice does not list their scaling factors in the documentation. This
is something that must be determined by experimentation.
Once all of the configuration variables are set, you have the basis for your custom
netlist exporter. Next, you need to customize the functions so they will work properly
for your tool.

 Modifying the Netlisting Functions as Needed
A good approach to modifying the netlisting functions is to create one component
definition file utilizing each function that you are going to modify. This will allow to test
each function as you write it.

Advanced Design System 2011.01 - Netlist Exporter Setup

55

In Creating the Source Code Directory, we specified that
{%CNEX_HOME_DIR}/ael/HSpice is the development directory. We will now make a new
file, cnexNetlistFunctions.ael , in that directory. This serves as the customization file for
netlisting functions. Once the file is created, it will always be loaded as long as HSpice is
selected as the netlisting tool.

The modification process consists of the following steps:

Modifying Instance Functions1.
Modifying Header and Footer Functions2.

To test your component definition file perform the following steps:

With ADS running, place a component in the schematic.1.
Create a Front End Flow netlist to test your function.2.
The function file is always reloaded each time a netlist is created.
Test the function as appropriate for the function, for example, review the netlist or3.
simulate a circuit.

 Modifying Instance Functions

Front End Flow provides eight instance netlisting functions.
To determine what the current function outputs and if modification is required, perform
the following steps:

Place ADS standard components on a schematic and netlist them with the Dracula1.
tool selected.
Check the output to determine if modification is required.2.
Determine if the component configuration or the function requires modification.3.

Note
If you are not certain if the component or the function requires modification, modify the
configuration first. It is easier to modify components.

Before testing, start ADS and create a new workspace so that no pre-existing
information is used. For the example in this section a new workspace,
HSpiceSetup_awrk , is created. Next, a new schematic design is created with the
name test1 .

 The cnexNetlistInstance Function

The next step is to find out what the current function exports for a known device and what
HSpice needs for that device. For simplicity, the following example uses a capacitor as the
template component.

To get an initial HSpice definition for the component, copy the Dracula definition into the
HSpice components directory.

Advanced Design System 2011.01 - Netlist Exporter Setup

56

Place a capacitor, component C , in the ADS test1 schematic.1.
Consult the HSpice documentation. According to the documentation, the following is2.
the general format for an element:
elname <node1 node2 ... nodeN> <mname>

+ <pname1=val1> <pname2=val2> <M=val>

The following is the specific format for a capacitor:
Cxxx n1 n2 <mname> <C=>capacitance <<TC1=>val> <<TC2=>val>

+ <SCALE=val> <IC=val> <M=val> <W=val> <L=val>

+ <DTEMP=val>

Find out what the current function returns. Bring up netlisting dialog box, and select3.
HSpice as the tool. Select the View netlist file when finished check box, and the
create a new netlist by clicking OK . The resulting netlist line for the capacitor is as
follows:
cc1 _net2 _net1 C=1pF

This matches the HSpice requirement.
You may want to use more complex components to verify more outputs. However, in
this example, the cnexNetInstance function output is the same as that required by
HSpice. Therefore, for the capacitor component, HSpice does not need an override of
the cnexNetlistInstance function.

 The cnexSubcircuitInstance Function

To test the outputs of this function, first make a subcircuit, then follow the procedure
below.

Note
This example shows what to do if your first test case does not show needed parameter output information.

Make a subcircuit by placing two ports in test1 design and connecting them to the
capacitor that was placed to test the cnexNetlistInstance function.

Create a symbol by using Window > Symbol from a schematic window.1.
This creates a new two port symbol for the test1 component.
Save that design and then create a new design, test2 .2.
Place one instance of test1 in the test2 design.3.
Check the HSpice documentation for the definition of a subcircuit. According to the4.
HSpice documentation, the following is the definition for a subcircuit call:
Xyyy n1 <n2 n3 ...> subnam <parnam= val ...> <M= val >
The subcircuit does not have parameters; therefore, the test will not give you output
information. You must add a parameter to the test.
Select File > Design Parameters from the schematic window for test1.5.
The Design Parameters dialog will appear.
Select the Parameters tab, and create a new parameter called C with a default6.
value of 1 p . Set the parameter type to Capacitance . Add the parameter and save
the design.
Go back to the top level, delete the instance of test1 and place it again on the7.
schematic. It now has a parameter, C .

Advanced Design System 2011.01 - Netlist Exporter Setup

57

Netlist the design. The result for the test1 instance is as follows:8.
xx1 _net1 _net2 test1 C=1p

This output matches the HSpice requirements, so you do not need to make any
changes.

 The cnexGlobalNodeInstance Function

To place a GlobalNodeInstance , select the menu option Insert > Global Node .
Add a new global node, g1 , to the global node list, and put a wire label on one of the pins
of the test1 instance.

According to the HSpice documentation, global nodes are designated in HSpice by
outputting a .global directive. Thus, to netlist the GlobalNodeInstance correctly, it must
create a .global option in the HSpice netlist.

After placing the global node and creating a new netlist, the result is as follows:
.global g1

This matches the HSpice requirement, so you do not need to add any changes for
cnexGlobalNodelInstance in the custom cnexNetlistFunctions file for HSpice.

 The cnexVariableInstance Function

Place a variable instance by inserting a VAR component.1.
Set up three variables in the VAR component: C1=2p , C2=3p , and C3=C1+C2 .2.
To create a parameter, the HSpice documentation states to use the following syntax:
.PARAM <SimpleParam> = <value>

.PARAM <AlgebraicParam> = 'SimpleParam*8.2'

A netlist is created and gives the following results:3.
.param C1=2p

.param C2=3p

.param C3='C1+C2'

This is what HSpice expects. Again, the function does not have to be overridden.

 The cnexShortInstance Function

Do not override this function.
It takes the output of multiple nodes and replaces all future occurrences of the nodes with
one equivalent node, usually the first node of the component.
Use this function on tline components, if you want to use the HSpice transmission line
component.

Advanced Design System 2011.01 - Netlist Exporter Setup

58

 The cnexShortMultiportInstance Function

Do not override this function.
It will take the instance list, match the pairs of nodes to each other, and short-circuit the
node pairs. The first node in the pair becomes the name used whenever the second node
in the pair is encountered anywhere in the current subcircuit.

 The cnexUnknownInstance Function

You do not need to override this function.
This function outputs a comment for a component that does not have an HSpice definition.

 Modifying Header and Footer Functions

So far in the example none of the default instance netlisting functions were incorrect for
the HSpice netlister. The cnexNetlistFunctions.ael file is still empty, except for the
comment line that has been placed to indicate that this file is customization for HSpice.

Next are the header functions. These functions create the lines output at the beginning of
the netlist, the beginning of the top cell, and the beginning of each subcircuit. The footer
functions take care of what is output at the end of the netlist, the end of the top cell, and
the end of each subcircuit definition.

 The cnexOutputSubcircuitHeader Function

This function returns the subcircuit definition line.
The HSpice documentation specifies that a proper definition as follows:

.SUBCKT subnam n1 < n2 n3 ...> < parnam=val ...>

The test2 circuit already has a subcircuit placed in it, test1 . The netlist you generated
gives the following for the test1 subcircuit definition:
.subckt test1 _net3 _net1 C=1p

The output is correct for HSpice: the .subckt was output, the nodes are there, and the
parameter definition is correct.

 The cnexOutputSubcircuitFooter Function

This function outputs the end of a subcircuit definition.
The HSpice documentation specifies the following end of a subcircuit definition:

Advanced Design System 2011.01 - Netlist Exporter Setup

59

.ENDS < _SUBNAM_ >

The netlist generated from testing using cnexOutputSubcircuitHeader , returns the
following:

.ends test1

This is a proper subcircuit ending for HSpice. This function does not need to be changed.

 The cnexOutputTopcellHeader Function

The top cell header appears at the beginning of the output for the top level circuit. In this
example, test2 is the top cell. For HSpice, nothing needs to be set for a top cell.
Components can be placed outside of a subcircuit definition, and HSpice recognizes them
as being in the top cell.
To run a test, you need to have simulation directives in the top level. If you look at the
netlist, you can see the following subcircuit definition for the top cell:

.subckt test2

This is valid for Dracula, but not for HSpice. This function needs to be changed so it works
for HSpice.
Look in the file cnexNetlistFunctions.ael in {%LVS_INSTALL_DIR}/ael . The current
function definition is as follows:

defun cnexOutputTopcellHeader(designName, context)

{

 return(cnexOutputSubcircuitHeader(designName, context));

}

The Dracula code calls the cnexOutputSubcircuitHeader function so that it creates the top
cell as if it were a subcircuit. HSpice does not want any top cell output, so write a new
function in the custom cnexNetlistFunctions.ael file that looks like this:

defun cnexOutputTopcellHeader(designName, context)

{

 return("");

}

This function returns an empty string instead of a subcircuit top cell header.

 The cnexOutputTopcellFooter Function

The top cell footer is output after all of the instance definitions for the top cell have been
created. In the example, test2 subcircuit is the top cell. Checking the netlist file, you see

Advanced Design System 2011.01 - Netlist Exporter Setup

60

that there is no top cell header for test2 because of the new cnexOutputTopcellHeader .
However, there is still an end directive for test2 . The cnexOutputTopcellFooter function
must be overridden so that there is no footer.

Examine the original code. The default definition is as follows:

defun cnexOutputTopcellFooter(designName, context)

{

 return(cnexOutputSubcircuitFooter(designName, context));

}

For this example, put in spacing after the end of the top cell and no end subcircuit
definition. To do this, the new function definition becomes the following:

defun cnexOutputTopcellFooter(designName, context)

{

 return("n");

}

This overrides the default function so that an empty new line is output at the end of the
top cell instances.

 The cnexExportNetlistHeader Function

The netlist header function outputs the first lines of the netlist. It takes care of outputting
options, including files and includes any comments. The default of this option already
supplies the correct output for HSpice. Therefore, you do not need to change it.

 The cnexExportNetlistFooter Function

This function is called to output lines that appear at the end of the file. For HSpice, the
netlist places an .end directive at the end of the file. Anything after the .end is treated as
comments. The default cnexExportNetlistFooter function places an .end directive.
Therefore, you do not need to change the function.

 Creating Component Definitions
Now you should set up all of the components needed for your process and your simulation
needs. This section deals with components that are delivered with ADS. Your foundry kit
components should fall into these categories. Because ADS has hundreds of components.
This section shows only one example in each component category.

Advanced Design System 2011.01 - Netlist Exporter Setup

61

 Primitive Components

A primitive component is a component that is netlisted and uses one of the built-in
simulator components. It has no hierarchy and does not need a model because the
parameters of the component represent all of the information needed to define the
component.
This example uses a capacitor as a primitive. Before you start, gather the following
information:

The simulator component used by the component in ADS
The pin count and order used by the component in ADS
The parameters that the component has in ADS, and whether they are netlisted or
not
The Dracula definition is not identical to the HSpice definition.
You have the following information:
It netlists as a capacitor.
The pins are 1 and 2, and the order is not important.
The parameters are C , Temp , Tnom , TC1 , TC2 , wBV , InitCond , Model , Width ,
Length , and _M .

Consult the HSpice documentation to find the following capacitor primitive definition:

Cxxx n1 n2 <C=>capacitance <<TC1=>val> <<TC2=>val>

\+ <SCALE=val> <IC=val> <M=val> <W=val> <L=val>

\+ <DTEMP=val>

or

Cxxx n1 n2 <C=>'equation' <CTYPE=val>

or a polynomial form:

Cxxx n1 n2 POLY c0 c1...

The second and third definitions do not match the ADS ones. The ADS capacitor is set up
to match the first definition.
Now that the target format is known, you can edit the definition. In Component Definitions
(feflowlc), two ways of editing a component definition are discussed, using the GUI and
editing the file directly. If you have many components to edit, it is easier to edit the text
files directly. The GUI is best if you edit one component at a time.

This section uses the text editor approach. Open the file C.cnex in a text editor.

 Modifying the Component Definition Parameters

Set up the function. For the example in this section, based on the functions available and

Advanced Design System 2011.01 - Netlist Exporter Setup

62

the fact that this is not a subcircuit, cnexNetlistInstance is the right function to use.

In HSpice a capacitor device name must be prefixed with a C . The Component_Name field
can also be left unchanged, because it is already set to C .

Because this is an ideal capacitor, it does not matter which terminal is negative or
positive. Based on the ADS symbol, pin 1 is the negative terminal. If polarity is important,
you must change the pin association.
Now, you must find out which parameters to netlist, how to map their names into the
proper HSpice names, and if any value mapping needs to be done for the parameters.
Base this on reading the documentation and comparing the parameters for ADS and
HSpice.

Additionally, you need to determine which parameters are important for your design. If
temperature is not important, do not output them.

HSpice requires the parameters output in the following order:
Model, C, TC1, TC2, SCALE, IC, M, W, L, and dtemp
Of these parameters, all must be explicitly named, except for Model , which does not have
a name, and C , where the name is optional.

ADS does not have an equivalent for the parameter SCALE . Discard that parameter. ADS
has a parameter, wBV , which does not correspond to any HSpice parameter. Do not use
it.

The parameter dtemp , the difference in component temperature from circuit temperature,
is not the same as Temp , which is the absolute temperature of the component. You must
write a function to output the dtemp parameter.

The ADS parameters InitCond , Width , Length , and _M have definitions that match
HSpice parameters IC, W, L , and M, but have different names. You must map these
names.

The new Parameters line is set to the following:

Parameters = Model C TC1 TC2 InitCond _M Width Length Temp

Note
The parameters line specifies the ADS parameter name, not the HSpice parameter name.

The parameter Model should output without <param name>= for its value. To do this
mapping, a the following parameter name-mapping line is placed:

Parameter_Name_Mapping = Model

Because there is only a single value, the name Model is mapped to an empty string. This
means that the function will not output a left hand side for the value.

The parameters C , TC1 , and TC2 do not need to be mapped. There is nothing is put into

Advanced Design System 2011.01 - Netlist Exporter Setup

63

the file for them.

The parameters InitCond , _M , Width , Length , and T emp need to be mapped. The
following lines are added to handle these parameters:

Parameter_Name_Mapping = InitCond IC

Parameter_Name_Mapping = _M M

Parameter_Name_Mapping = Width W

Parameter_Name_Mapping = Length L

Parameter_Name_Mapping = Temp DTEMP

The ADS parameter Temp is mapped to dtemp , but their values are not identical. In
Adding Value Mapping Functions (feflowlc), the process for writing a value mapping
function is described. In this case, the following code returns the correct value for dtemp .
The ADS parameter value contains the absolute value temperature value placed in ADS.
The parameter -temper contains the circuit value. If you subtract -temper from value ,
you get the differential temperature, the value needed for the HSpice parameter dtemp .
Set up the function to take the ADS parameter value , and return the appropriate HSpice
value to go into dtemp : as follows

defun hspiceModifyTemp(value)

{

 decl returnVal;

 returnVal=strcat("'", value, "-temper'");

 return(returnVal);

}

To make the Temp function use the value, enter the following line:

Parameter_Type_Mapping = Temp hspiceModifyTemp

The component must now be netlisted. Open test1 schematic, which already has a C
component placed.
However, if a parameter does not have a value, it will not be output. Therefore, it is
necessary to set values for all of the parameters so that they are netlisted correctly. So, C
is set to 1.0pF, Temp is set to 27, TC1 is set to .1, TC2 is set to .01, InitCond is set to 1,
Model is set to CTest, Width is set to 10u, Length is set to 10u, and _M is set to 2. Then a
netlist is created as follows:

cc1 _net5 _net4 Ctest C=1pF TC1=0.1 TC2=0.01 IC=1 M=2 W=10um L=10um

DTEMP='27-temper'

This matches what the output that HSpice requires.

 Components that Access Models

Most active devices and some passive devices use components that contain additional

Advanced Design System 2011.01 - Netlist Exporter Setup

64

parameters for the instance. These auxiliary parameters can be shared among all of the
various instances that are similar. These auxiliary components are called models .

Some tools, such as ADS and Spectre, treat the model component as a user defined
component. When the instance is netlisted, instead of using a component name, such as
BJT , they use the model name.
Other tools, like HSpice, specify the component name the same as they do for a primitive.
The model is just another parameter.

This is an example of setting up a tool for HSpice. Therefore there is no difference
between a component that accesses a model and one that does not.

As another example, here is how to set the ADS BJT NPN component. As you would for a
primitive, gather the following information:

The simulator component used by the component in ADS
The pin count and order used by the component in ADS
The parameters that the component has in ADS, whether they are netlisted or not

If these devices netlist differently into your tool because of the model, you should also get
the following information:

The name of the model parameter
The type of models that are valid for the component

For this example, you want to netlist BJT_NPN , and make it be a Gummel Poon BJT NPN
device for HSpice.
According to the HSpice documentation , the following is the format for the BJT:

Qxxx nc nb ne mname <IC = vbeval,vceval>

+ <M = val> <DTEMP = val>

or

Qxxx nc nb ne mname <AREA = area> <AREAB = val>

+ <AREAC = val> <VBE = vbeval> <VCE = vceval> <M = val>

+ <DTEMP = val>

For HSpice, model is not a distinct element, its a parameter. This means that
cnexNetlistInstance is fine. Netlist_Function is set to cnexNetlistInstance .

The component name for an HSpice BJT component is Q , whether it is NPN or PNP . The
model designates the implanting type for the component. The Component_Name
parameter is set to Q .

The HSpice pin order in this case is collector, base, emitter, with an optional substrate.
The ADS symbol has three unnamed pins; 1, 2, and 3. The ADS symbol graphic shows
that pin 1 is the collector, pin 2 is the base, and pin 3 is the emitter. Since we need
HSpice's node order to be collector, base, emitter, the Terminal_Order variable is set to 1
2 3.

Advanced Design System 2011.01 - Netlist Exporter Setup

65

The ADS symbol has the parameters Model , Area , Region , Temp , Mode , Noise , and _M
. Mode specifies whether the device is linear or non-linear. Noise specifies whether the
device is a noise generation source. HSpice does not have an equivalent to either of these
parameters, so they're both dropped.

The rest of the parameters do match HSpice parameters, so the parameters value is set to
Model Area Region _M Temp to match the order that HSpice specifies in its
documentation.

In HSpice, the Model is output as a value only, so a line is put in to eliminate the
parameter name, Parameter_Name_Mapping = Model .

The section example outputs the left hand side of the area value for readability. Since
HSpice is not case sensitive nothing is needed for the area parameter.

Region is mapped to the HSpice parameter that designates whether the device is on or off
for DC analysis. ADS allows four settings for this value, 0 means the device is off, 1 means
the device is on, 2 means the device is reverse biased, and 3 means the device is
saturated. The last two are meaningless to HSpice, so these values need to be mapped.
Additionally, HSpice does not want integer values, it wants the value to be a text value on
or off . We need a value mapping function for this parameter.

First, the parameter name is mapped so that it is not be output by creating a line as
follows:
Parameter_Name_Mapping = Region

Next, a line is created for the value mapping by placing the following line:
Parameter_Type_Mapping = Region hspiceModifyRegion .

The function hspiceModifyRegion must now be created. Copy the value mapping function
prototype into the file cnexNetlistFunctions.ael. The decision here is what to do with the
extra values ADS supports. The default value is that the device is on for both ADS or
HSpice. So if the value is empty or NULL, the function will return an empty string. For
simplicity, set them so that if the Region is 1 , the function will return the value on . This
yields the following function:

defun hspiceModifyRegion(value)

{

 decl returnVal;

 if(!value)

 returnVal="";

 else if(value == 1)

 returnVal="on";

 else

 returnVal="off";

 return(returnVal);

}

The _M parameter needs to be mapped to the parameter M . This is done with the
following line:

Advanced Design System 2011.01 - Netlist Exporter Setup

66

Parameter_Name_Mapping = _M M

The Temp parameter is mapped to DTEMP , and a value mapping function is specified for
Temp , hspiceModifyTemp . This time, the function has already been written, so it is a
matter of adding the following lines to the file:

Parameter_Name_Mapping = Temp DTEMP

Parameter_Type_Mapping = Temp hspiceModifyTemp

This completes the component definition. The circuit test3 has a BJT_NPN component and
some basic biasing components around it, such as resistors and capacitors. After setting
reasonable values for all of the parameters and netlisting, the instance line for the
BJT_NPN component is as follows:

qbjt1 _net107 _net108 _net109 BJTM1 Area=1 off M=1 DTEMP='27-temper'

This is the correct output for HSpice.

 Model Components

A model component is a schematic instance that, when netlisted, becomes a model device
that other instances in the circuit can access. IC simulators often use model components.
Those simulators also support netlist fragments, pieces of a netlist include in the final
netlist which are available only through library calls or include statements.

The ADS simulator, which does not support netlist fragments.
If you use ADS model components in your circuit, the recommendation is to create netlists
for HSpice that contain the models you need. Then set up all of the ADS model
components so they netlist using the function cnexIgnoreInstance . In Setting Up
Automatically Included Files (feflowlc), there is a description that shows how to get your
netlist fragments included in the final netlist.

 Simulation Components

It is usually better to include a file that contains the simulations you wish to perform in
HSpice instead of an ADS simulation component. Many ADS simulation components do not
map into other simulators.
However, for certain simulations, such as DC, you can set up a simulation. The following is
an example of setting up a DC component to netlist for HSpice.

Since we know what the component is, check to see what HSpice needs in order to
designate a simulation.
When a DC simulation is done, you are trying to find the operating point of the circuit at
the time index of zero. To do this in HSpice, the correct line is as follows:

Advanced Design System 2011.01 - Netlist Exporter Setup

67

.OP <format> <time> <format> <time>

Additionally, to perform variable sweeps, you need a DC line as follows:

.DC var1 start1 stop1 incr1 <var2 start2 stop2 incr2 >

In ADS, the operating point calculation and the variable sweeps are both potentially
designated in a single DC component. This is a case of needing two lines of output for a
single component.
The only way to figure out the right parameter name is to look at the netlist, and then use
the simulator's help capability.

First, generate an ADS netlist, and identify the components line by looking for its instance
name. The string in front of the instance name is the device that the component is
netlisted as, in this case, DC. To get help on the DC component from the simulator, type
in hpeesofsim -help DC in a command line terminal. This will give you the parameters that
are valid for the DC device, and a brief description of each parameter.

For the DC operating point, the parameter name in the simulator is DevOpPtLeve l.

If DevOpPtLevel is placed in the component definition, it will be possible to retrieve its
value using the function cnexGetParameterValues . The value is examined, and either
NONE , BRIEF , or ALL is output, based on the value that was returned. If there was no
value, nothing is output at all.

The sweep line is determined by looking at the value of SweepVar , which will specify
whether a .DC sweep will need to be output.

The sweep plan has the variable names Start , Stop , and Step . Assume these are the
right parameter names, and set these up on the parameters line along with SweepVar .
The function will then have to step through and grab these values from the parameter list
that was returned from cnexGetParameterValues .

Since there is a known set of values set, a while loop is set up to output the remaining
three parameters. This yields the following component definition file for DC.cnex :

Netlist_Function = hspiceOutputDcComponent

Component_Name =

Terminal_Order =

Parameters = DevOpPtLevel SweepVar Start Stop Step

And the following function definition was created for hspiceOutputDcComponent:

defun hspiceOutputDcComponent(instH, instRecord)

{

 * This is a function that will specifically output a .OP and .DC

 line for HSpice from a DC component. */

 decl net=".OP";

 decl paramList=cnexGetParameterValues(instH, instRecord);

Advanced Design System 2011.01 - Netlist Exporter Setup

68

 decl paramRecord, paramValue;

 /* Get the record for DevOpPtLevel */

 paramRecord=car(paramList);

 paramValue=nth(1, paramRecord);

 paramList=cdr(paramList);

 if(paramValue)

 {

 if(paramValue == "0")

 {

 net=strcat(net, " NONE");

 }

 else if (paramValue == "2")

 {

 net=strcat(net, " BRIEF");

 }

 else

 {

 net=strcat(net, " ALL");

 }

 }

 /* Get the record for SweepVar */

 paramRecord=car(paramList);

 paramList=cdr(paramList);

 paramValue=nth(1, paramRecord);

 if(paramValue)

 {

 net=strcat(net, "\n.DC ", paramValue);

 while(paramList)

 {

 paramRecord=car(paramList);

 paramList=cdr(paramList);

 net=strcat(net, " ", nth(1, paramRecord));

 }

 }

 return(net);

}

The component is netlisted, and the result is as follows:

.OP ALL

.DC "X" 1000 10000 1000

After the first iteration, it appears that the name of the variable is quoted. The parameter
formatting function did not take the double quotes out, and ADS specifies the value is
explicitly a string.

Two things could be done. A parameter type mapping function could be specified that
would remove the quotes, or, code could be added directly into the function to remove the
quotes. The second choice has been made in this case, so two new line are added prior to
the net=strcat(net, "\n.DC ", paramValue); line:

if(leftstr(paramValue, 1) == "'")

 paramValue=midstr(paramValue, 1, strlen(paramValue)-2);

A DC component is placed, and a netlist is created. Now the output is as follows:

Advanced Design System 2011.01 - Netlist Exporter Setup

69

.OP ALL

.DC X 1000 10000 1000

This is what is needed. It is now possible to run a basic DC simulation in both ADS and
HSpice by placing a DC component.

Similar setups could be done for the AC component and the Tran component. Other than
DC, AC, and Transient simulation, ADS and HSpice don't have much in common in the way
of simulation. These three simulations should be enough to drive model comparison
simulations.

 Components that Access Netlist Fragment Subcircuits

A netlist fragment is a piece of a netlist that is meant to be reused in other netlists by
using library statements or include statements. These can either be models, or they can
be complete subcircuits, or even complete subcircuit hierarchies.

If you have a component that is hierarchically defined in ADS, it is a subcircuit and uses
cnexSubcircuitInstance . If your component is going to access another subcircuit, and it is
not hierarchically defined in ADS, but the instance line still needs to be output as a
subcircuit reference, you still need to use the function cnexSubcircuitInstance. If you use
cnexNetlistInstance , assuming that because your subcircuit in the fragment is now a new
primitive, like it is in ADS, you will not get the correct HSpice format.

For HSpice, a subcircuit is referenced by an instance by using a line with the following
format:

Xyyy n1 <n2 n3 ...> subnam <parnam= _val_ ...> <M= _val_ >

A new component, test4 is created. This component access one of the following two pre-
made netlist fragments that has the subcircuit headers:

.subckt cktA pos neg Width=2u Lenth=10u

.subckt cktB pos net Width=2u Length=10u

These represent the resistors of two different types. The user chooses between the two
resistors by selecting from a pull-down menu on a parameter called circuit . This is the
type of setup used if you have a high impedance and a low impedance resistor and have
parasitic subnetworks to represent each of the two types of resistor where the parasitic
values cannot be simply calculated based on parameters that are passed into the circuit.

You can make a component definition for a user defined device. Because the default
behavior will not be correct in this case, a new file, test4.cnex , is made in the HSpice
component directory.

Since the netlist fragments are subcircuits, the Netlist_Function is set up to be

Advanced Design System 2011.01 - Netlist Exporter Setup

70

cnexSubcircuitInstance .
The terminal order can be determined from the subcircuit headers. It must be pos neg .

You want the subcircuit name, Component_Name field, to be picked up from the value
that is specified in the circuit parameter. Instead of putting an explicit name, the
Component_Name field is set to @circuit , which tells the netlisting code to use the value
of the circuit parameter.

Because circuit is being used as the component name, it does not need to be output as a
parameter. The only two parameters are Width and Length . For this particular subcircuit,
the parameter names in the SPICE file are the same as the parameter names of the
component. No name mapping is required. The final component definition file becomes the
following:

Netlist_Function = cnexSubcircuitInstance

Component_Name = @circuit

Terminal_Order = POS NEG

Parameters = Width Length

Two instances of test4 are placed in a new circuit, test5 . Once instance has circuit set to
cktA and the other has circuit set to cktB . A netlist is generated and the output lines are
the following:

xx2 _net28 _net27 cktb Width=2uM Length=10uM

xx1 _net28 _net27 ckta Width=2uM Length=10uM

These two instance lines match the needed output for the subcircuit headers that were
shown.

 Verifying the Netlist
Verifying the netlist comprises of making sure that the subcircuit definitions are output
correctly and that each instance is output correctly.

For the HSpice simulator ready netlists, to back annotating the DC results to the ADS
schematic, you can name all of the nodes in the schematic, which will force ADS to store
the DC results into a dataset file. You can then view the results of the ADS simulation in
the Data Display Server, and the HSpice results in their results viewer.
If you have a schematic in another tool that can drive HSpice, you can create a netlist
from that tool, and a netlist from ADS, and view simulation results from both of the
netlists.

 Component Verification

Here is a check list to follow that will allow you to verify any component:

Advanced Design System 2011.01 - Netlist Exporter Setup

71

Determine the ADS component type.1.
Determine the ADS terminal order.2.
Find out the ADS component parameters.3.
Determine the format needed by the new tool. For example, to make a capacitor in4.
HSpice, the format is the following:
Cxxx n1 n2 < mname > <C=>capacitance <<TC1=> val > <<TC2=> val > <SCALE= val >
<IC= val > <M= val > <W= val > <L= val > <DTEMP= val >.
Create a component definition for the ADS component.5.
Place one instance of the component in a schematic. Make sure to set all of the6.
parameters so they have values.
This will guarantee that parameters that are supposed to be netlisted are netlisted,
and that parameters that aren't supposed to be netlisted are not.
Create a netlist. Make sure to set the checkbox so that the netlist will be shown after7.
netlisting is finished.
Compare the instance line that was output to the format line that you determined8.
was needed.
If they match, you are finished. If they do not match, determine if it is because you
need a value mapping function, or if you mis-configured something. Also, consider
whether your format may need to have configuration variables or the instance
function itself changed.

Advanced Design System 2011.01 - Netlist Exporter Setup

72

 Setting up GUI Options
Netlist Exporter (feflowug) describes the netlist exporting dialog. The dialog has a
command button labeled Modify Option List . When you click it, a file named cnexOptions
loads in the location specified by the path in CNEX_EXPORT_FILE_PATH (feflowlc). The
GUI Option dialog creates this file, the content of which depends on the tool you have
chosen. The cnexOptions file loaded by the GUI dialog overrides the default version of
cnexOptions that comes with Front End Flow.

Note
A working knowledge of AEL programming is required to setup GUI options.

 Option List Global Variable
The Front End Flow API function cnexExportNetlistHeader outputs netlist lines at the
beginning of the netlist file. The header lines include comment lines, file includes, and
global option statements.

The function cnexExportNetlistHeader collects the global option statements from the global
variable cnexExportOptionList . This variable contains one text entry for each option line
that appears in the netlist.
The following list shows some netlist options for various tools:

Dracula: *.BIPOLAR
HSpice: .TEMP 25
ADS: Options ResourceUsage=yes
To output an option into the netlist file, the global option variable,
cnexExportOptionList must have a line that specifies the option.

For example, to get the *.BIPOLAR option to appear in the header of a Dracula netlist file,
write the following line:

cnexExportOptionList=list("*.BIPOLAR");

This causes a single option, *.BIPOLAR , to be output in the netlist header.
You can also add more options to the cnexExportOptionList variable by using the ADS
append command as follows:

cnexExportOptionList=append(cnexExportOptionList, list("*.CAPVAL"));

This adds the option, *.CAPVAL , to the list.
The following method is recommended to build up your option list:

Read all of your options from a configuration file.1.
Use the append function to build up the final cnexExportOptionList.2.

Advanced Design System 2011.01 - Netlist Exporter Setup

73

 Option List Global Variable for Dracula

In the cnexOptions file, Dracula has a function, cnexSetupDraculaOptions , that uses the
ADS AEL function getenv to retrieve configuration file values. It then checks the values of
the configuration variables and determines how to set up the global option variable,
cnexExportOutputList .

The following code is an example of the use of cnexSetupDraculaOptions for conditional
loading of options. The Dracula options used depend on the options in the global options
list.

 Making an Options List for Dracula

defun draculaConvertToBoolean(value)

{

 if(value == "1")

return(TRUE);

else

return(FALSE);

}

defun cnexCreateNetlistOptionList(value)

{

 cnexExportOptionList=append(cnexExportOptionList, list(value));

}

defun cnexSetupDraculaOptions()

{

cnexExportOptionList=NULL;

decl bipolar=draculaConvertToBoolean(getenv("bipolar", "dracula"));

if(bipolar)

{

cnexCreateNetlistOptionList("*.BIPOLAR");

decl capa=draculaConvertToBoolean(getenv("capa", "dracula"));

if(capa)

The function getenv(<option>, <file>) receives the specified option from the specified file
name.
The function draculaConvertToBoolean checks to see if the value returned for a
configuration variable is 1 . If it is, the value returned is the boolean TRUE value;
otherwise, FALSE is returned. This function is needed because the getenv function will
return strings, even if a value could be interpreted as a number.

Note
If you request a configuration variable that does not exist with the getenv function, it will return NULL .
Otherwise, the text value of the variable will be returned.

It is usually recommended that your option configuration file have the same name as the
Front End Flow configuration file. However, this is not required because the configuration
file name can be hard coded

It is recommended that you write a function that retrieves the options settings from a

Advanced Design System 2011.01 - Netlist Exporter Setup

74

configuration file. That way, you can set the global options list up by calling the function
anywhere within your own code.

Advanced Design System 2011.01 - Netlist Exporter Setup

75

 Setup
This section covers the installation configuration file settings for Front End Flow. For
information on using Front End Flow, refer to the Netlist Exporter (feflowug).

 License Requirements
The following license is required for Front End Flow to operate in Advanced Design System :

trans_spice_netlist

This license is associated with the E8880 SPICE Netlist Translator module.

Note
Before continuing, ensure that you have a valid license for the ADS schematic environment. For more
information on ADS licenses, refer to Windows License Setup (instalpc) or ADS License Setup - Unix and
Linux (install).

 Installing Netlist Exporter
The Netlist Exporter installation procedure continues to be improved to make it easier for
you to install and configure. Netlist Exporter is now installed with each installation of
Advanced Design System that includes the Simulators and Design Entry component. For
more detailed information on the Netlist Exporter installation procedure, refer to the
information below.
To install Netlist Exporter:

For a UNIX installation, follow the instructions in UNIX and Linux Installation (install)1.
to run the SETUP utility and load the install program.
For a PC installation, follow the instructions in Windows Installation (instalpc). The
setup program will automatically bring up the Software Installation Wizard.
After the Agilent EEsof Installation Manager starts, you are prompted to select one of2.
the following installation options:

Complete - If you choose a Complete installation, the Netlist Exporter will be
automatically installed.
Custom - If you choose a Custom installation, the Netlist Exporter will be
automatically.

Continue the installation process by following the setup instructions. After the3.
installation is complete, you will have the following:

In $HPEESOF_DIR , there will be a netlist_exp directory. This is the installation
home of Front End Flow.
In the config directory, there will be a new CNEX.cfg file, which contains the
default settings for the Front End Flow.
A menu labeled Netlist Export will appear in the tools menu on Schematic
windows.
For more information on installation procedures, refer to UNIX and Linux
Installation (install) or Windows Installation (instalpc).

Advanced Design System 2011.01 - Netlist Exporter Setup

76

 Configuration File Settings
The following configuration options exist and can be modified in CNEX.cfg files.
Modifications can be made to the following CNEX.cfg files:

$HPEESOF_DIR/config/CNEX.cfg
$HPEESOF_DIR/custom/config/CNEX.cfg
$HOME/hpeesof/config/CNEX.cfg.

Note
Do not make modifications to the file CNEX.cfg that is inside your workspace. This file is
automatically updated by the Front End Flow application.

 CNEX_TOOL

This value is used to construct AEL paths and component paths so that appropriate code
and component definitions will be used. The CNEX_TOOL value will default to Assura after
installation. The netlist export and component dialog settings modify the CNEX_TOOL
value in the CNEX.cfg file that is within the current working directory. No manual change
is necessary.

 CNEX_HOME_DIR

This value specifies the home directory for user defined AEL customizations and
component definitions. It is available as a shorthand notation for the
CNEX_EXPORT_FILE_PATH and CNEX_COMPONENT_PATH variables.

Note
It is recommended that this value not be changed from its default value of {$HOME}/hpeesof/netlist_exp .
If you do not wish to have user customizations available, remove CNEX_HOME_DIR from
CNEX_EXPORT_FILE_PATH and CNEX_COMPONENT_PATH .

 CNEX_CUSTOM_DIR

This value specifies the directory used for site-wide Front End Flow customizations. The
default value is {$HPEESOF_DIR}/custom/netlist_exp . If you do not wish to follow the
ADS standard for site wide customization, this directory can be changed into any Unix or
PC path.

 CNEX_INSTALL_DIR

This value specifies the installation point of the Front End Flow software. The default value

Advanced Design System 2011.01 - Netlist Exporter Setup

77

is {$HPEESOF_DIR}/netlist_exp . If you wish to maintain multiple versions of Front End
Flow software, you can install the Front End Flow application at locations outside of the
HPEESOF_DIR directory tree, and alter CNEX_INSTALL_DIR to point to that directory.

Note
CNEX_INSTALL_DIR must always be set to a valid Front End Flow installation. The default un-customized
files in CNEX_INSTALL_DIR will be loaded each time during netlist exporting, even if other customization
files that contain the default functions have been created.

 CNEX_DESIGN_KIT_PATH

This value will be set during netlist exporting, and will update to include all of the
component directories that are available for CNEX_TOOL in the design kits that are loaded
in the ADS session. No manual change is necessary.

Note
This value is empty in the default CNEX.cfg file−do not change this value.

 CNEX_DESIGN_KIT_AEL_PATH

This value is set during netlist exporting, and will update to include all of the custom AEL
code for CNEX_TOOL that is available for a design kit. No manual change is necessary.

Note
This value is empty in the default CNEX.cfg file−do not change this value.

 CNEX_EXPORT_FILE_PATH

This value specifies the directory search order for AEL code that will be loaded during
netlist exporting. The Front End Flow netlister will always load the files cnexGlobals.ael
and cnexNetlistFunctions.ael when a netlist is to be generated. The file loader will load
each cnexGlobals and cnexNetlistFunctions file found within CNEX_EXPORT_FILE_PATH .

Note
When an AEL file is loaded, it will override existing variables and functions. By loading the files in the
order specified, it is possible for later files to override the default functions that are shipped for Front End
Flow. Therefore, place the paths in priority in the path list: lowest priority path first in the path list and
highest priority path at the end of the list.

The default CNEX_EXPORT_FILE_PATH value is the following:
{%CNEX_INSTALL_DIR}/ael;{%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL};
{%CNEX_CUSTOM_DIR}/ael;{%CNEX_CUSTOM_DIR}/ael/{%CNEX_TOOL};
{%CNEX_HOME_DIR}/ael;{%CNEX_HOME_DIR}/ael/{%CNEX_TOOL};
{%CNEX_DESIGN_KIT_AEL_PATH}

Advanced Design System 2011.01 - Netlist Exporter Setup

78

Note
The CNEX_EXPORT_FILE_PATH value must be a single line in the configuration file.

 CNEX_COMPONENT_PATH

This value specifies the directory search order for Front End Flow component definitions.

Note
Only the first definition encountered in the CNEX_COMPONENT_PATH will be read. Place the paths in
priority in the path list: highest priority path first in the path list and lowest priority path at the end of the
list.

The default value after installation is the following:
{%CNEX_DESIGN_KIT_PATH};{%CNEX_HOME_DIR}/components/
{%CNEX_TOOL};{%CNEX_CUSTOM_DIR}/components/{%CNEX_TOOL};
{%CNEX_INSTALL_DIR}/components/{%CNEX_TOOL}

Note
The CNEX_EXPORT_FILE_PATH value must be a single line in the configuration file.

 Design Tool Support
The following design tools are supported by ADS Front End Flow:

Cadence Dracula
Cadence Assura
Mentor Graphics* Calibre

 Component Support

These tools have component definitions available for the ADS standard parts in the
$HPEESOF_DIR/netlist_exp/components directory. User defined libraries and parts require
Front End Flow customization. Refer to Component Definitions (feflowlc) for customization
information. Optionally, you can contact the Agilent Technologies Solution Services group
to contract special support for your user defined libraries and parts.

 Netlist Options Support

Custom AEL code to support netlist options for the supported design tools is provided in
$HPEESOF_DIR/netlist_exp/ael .

 Unsupported Design

 Unsupported Design Tools

Advanced Design System 2011.01 - Netlist Exporter Setup

79

To use a non-supported design tool with ADS, you will need to customize Front End Flow
to work with that tool. Refer to Adding Tools to Front End Flow for customization
information. Optionally, you can contact the Agilent Technologies Solution Services group
to contract special support for your unsupported design tool.

 Front End Flow Directory Structure
Front End Flow has many layered elements. Each subsequent layer adds new functionality
to the product. Part of the layering is the Front End Flow directory structure.
The following four subdirectories are created in the Front End Flow directory wherever a
netlist_exp is appropriate:

ael The ael directory contains the compiled AEL (atf) program files with or without the associated
AEL files. Each directory specified in CNEX_EXPORT_FILE_PATH will be searched for AEL files
relevant to Front End Flow (see CNEX_EXPORT_FILE_PATH (feflowlc)). The relevant files will be
loaded. For more information on AEL files as they relate to Front End Flow, see Customizing a
Netlister (feflowlc), and Setting up GUI Options (feflowlc).

components The components directory contains subdirectories for the tools supported by Front End Flow. In
each tool subdirectory, there are component definition files for the components set up for Front
End Flow for that particular tool. See Component Definitions (feflowlc) for information on
component definition files.

config The config directory can be found in the following three locations:

include The files to automatically include in a netlist are specified within the tool−specific subdirectory of
the include directory. See Customizing a Netlister (feflowlc), for more information about
automatically included files.

 Adding Tools to Front End Flow
The Front End Flow netlister presents a drop-down list of available tools. The generated
netlist is compatible with the selected tool. See Creating Netlists (feflowug). Custom tools
can be added to the list to meet specific netlist requirements.

 The Need for Adding Tools

Front End Flow outputs netlists in an HSpice-like format, with the top level circuit
represented as a subcircuit in the generated netlist. This format is ideal for a number of
LVS tools, but is not well suited for simulators. The following are some reasons that an
additional tool may be required:

The design tool used does not support HSpice-like formats.
Separate component definitions are required for components that do not have
identical netlist representations for separate tools (even if both tools are able to
utilize the default HSpice-like format).

Advanced Design System 2011.01 - Netlist Exporter Setup

80

 Adding a Tool

Adding a new tool requires knowledge of how that drop down list is populated.
The configuration variable CNEX_COMPONENT_PATH defines the locations for the tool
component definition files. See Configuration Files (feflowlc) for more information on
CNEX_COMPONENT_PATH . Each tool that is configured needs to have at least one
subdirectory, < tool >, under a Front End Flow netlist_exp/components directory that
contains the component definition files.

If a subdirectory is found under an netlist_exp/components directory, it is assumed that
subdirectory represents the name of a tool for Front End Flow. For example, there are
three Front End Flow standard subdirectories, assura , calibre , and dracula , in the
directory $HPEESOF_DIR/netlist_exp/components . These tool names are present in the
tools drop−down list in the dialogs.

Note
If a custom tool is selected from the tools drop−down list, component definitions will then only be read out
of component directories that end in the leaf directory < tool >.

To add a new tool to the tools drop−down list, use the following procedure:

Make a new directory, < tool >, in a components directory. The name of the new1.
directory will be the tool name displayed in the tools drop−down list.
The < tool > directory needs to be located under one or more of the
netlist_exp/component directories in CNEX_COMPONENT_PATH . It is not necessary
to have < tool > located under every netlist_exp/component directory.
The next time a Front End Flow dialog is called, it will have tool in the tools list.
If the default netlist exporting format is inappropriate for the new tool, it will be2.
necessary to create custom AEL code that will support the new tool. Refer to
Customizing a Netlister (feflowlc) for the process to write custom AE code. Place the
custom AEL code in a directory called < tool > under $HOME/hpeesof/netlist_exp/ael
. The Front End Flow netlister will look for files to support customization in that
directory.

	 Component Definitions
	 Component Definition Files
	 Component Definition File Setup with the GUI

	 Configuration Files
	 Configuration Files Used with Front End Flow
	 Configuration File Locations
	 Configuration File Descriptions
	 Tool Configuration Files

	 Customizing a Netlister
	 Setting Up Automatically Included Files
	 Adding Value Mapping Functions
	 Adding New Netlist Exporting Functions
	 Overriding Existing Front End Flow API Functions

	 Front End Flow Functions
	 Instance Netlist Exporting Functions
	 Subcircuit Header Functions
	 Subcircuit Footer Functions
	 Netlist Header Function
	 Netlist Footer Function
	 Circuit Output Functions
	 Parameter Formatting Functions
	 Global Variable Functions
	 Core Functions

	 Hspice Netlister Example
	 Creating the New Dialect Directories and Files
	 Modifying the Configuration File as Needed
	 Modifying the Netlisting Functions as Needed
	 Creating Component Definitions
	 Verifying the Netlist

	 Setting up GUI Options
	 Option List Global Variable

	 Setup
	 License Requirements
	 Installing Netlist Exporter
	 Configuration File Settings
	 Design Tool Support
	 Front End Flow Directory Structure
	 Adding Tools to Front End Flow

